MAX232E SLLS723C - APRIL 2006-REVISED AUGUST 2016 # MAX232E Dual RS-232 Driver and Receiver With IEC61000-4-2 Protection #### **Features** - Meets or Exceeds TIA/RS-232-F and ITU Recommendation V.28 - ESD Protection for RS-232 Bus Pins - ±15-kV Human-Body Model (HBM) - ±8-kV IEC61000-4-2, Contact Discharge - ±15-kV IEC61000-4-2, Air-Gap Discharge - Operates From a Single 5-V Power Supply With 1-µF Charge-Pump Capacitors - Operates up to 250 kbit/s - Two Drivers and Two Receivers - Low Supply Current: 8 mA Typical ## **Applications** - TIA/RS-232-F - **Battery-Powered Systems** - **Terminals** - Modems - Computers ## 3 Description The MAX232E is a dual driver and receiver that includes a capacitive voltage generator to supply RS-232-F compliant voltage levels from a single 5-V supply. Each receiver converts RS-232 inputs to 5-V TTL/CMOS levels. This receiver has a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/RS-232-F levels. #### Device Information⁽¹⁾ | PART NUMBER | PACKAGE (PINS) | BODY SIZE (NOM) | |--------------------------|----------------|--------------------| | MAX232ECD
MAX232EID | SOIC (16) | 9.90 mm × 3.91 mm | | MAX232ECDW
MAX232EIDW | SOIC WIDE (16) | 10.30 mm × 7.50 mm | | MAX232ECN
MAX232EIN | PDIP (16) | 19.30 mm × 6.35 mm | | MAX232ECPW
MAX232EIPW | TSSOP (16) | 5.00 mm × 4.40 mm | ⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet. ### Logic Diagram (Positive Logic) # **Table of Contents** | 1 | Features 1 | | 8.1 Overview | . 9 | |---|--|----|--|-----| | 2 | Applications 1 | | 8.2 Functional Block Diagram | . 9 | | 3 | Description 1 | | 8.3 Feature Description | . 9 | | 4 | Revision History2 | | 8.4 Device Functional Modes | 10 | | 5 | Pin Configuration and Functions | 9 | Applications and Implementation | 11 | | 6 | Specifications4 | | 9.1 Application Information | 11 | | U | 6.1 Absolute Maximum Ratings | | 9.2 Typical Application | 11 | | | 6.2 ESD Ratings | 10 | Power Supply Recommendations | 13 | | | 6.3 Recommended Operating Conditions | 11 | Layout | 13 | | | 6.4 Thermal Information | | 11.1 Layout Guidelines | | | | 6.5 Electrical Characteristics 5 | | 11.2 Layout Example | 13 | | | 6.6 Electrical Characteristics: Driver | 12 | Device and Documentation Support | 14 | | | 6.7 Electrical Characteristics: Receiver | | 12.1 Receiving Notification of Documentation Updates | | | | 6.8 Switching Characteristics: Driver | | 12.2 Community Resources | | | | 6.9 Switching Characteristics: Receiver | | 12.3 Trademarks | 14 | | | 6.10 Typical Characteristics | | 12.4 Electrostatic Discharge Caution | 14 | | 7 | Parameter Measurement Information | | 12.5 Glossary | | | 8 | Detailed Description9 | 13 | Mechanical, Packaging, and Orderable Information | 14 | ## 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. ## Changes from Revision B (November 2009) to Revision C **Page** | • | Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section | |---|---| | • | Deleted "±30-V Input Levels" from Features | | • | Deleted Ordering Information table; see POA at the end of the data sheet | | • | Added MIN value ±3 to "Receiver input voltage (RIN1, RIN2) row in Recommended Operating Conditions | | • | Changed R _{0JA} values in <i>Thermal Information</i> | | • | Deleted table note 3 from Receiver Section Electrical Characteristics | | • | Added a new row to the Function Table for Each Receiver | # 5 Pin Configuration and Functions D, DW, N, or PW Package Add 16-Pin SOIC, PDIP, or TSSOP Top View #### **Pin Functions** | | PIN | 1/0 | DESCRIPTION | |-----|-----------------|-----|--| | NO. | NAME | I/O | DESCRIPTION | | 1 | C1+ | _ | Positive lead of C1 capacitor | | 2 | V _{S+} | 0 | Positive charge pump output for storage capacitor only | | 3 | C1- | _ | Negative lead of C1 capacitor | | 4 | C2+ | _ | Positive lead of C2 capacitor | | 5 | C2- | _ | Negative lead of C2 capacitor | | 6 | V _{S-} | 0 | Negative charge pump output for storage capacitor only | | 7 | DOUT2 | 0 | RS-232 line data output (to remote RS-232 system) | | 8 | RIN2 | 1 | RS-232 line data input (from remote RS-232 system) | | 9 | ROUT2 | 0 | Logic data output (to UART) | | 10 | DIN2 | 1 | Logic data input (from UART) | | 11 | DIN1 | I | Logic data input (from UART) | | 12 | ROUT1 | 0 | Logic data output (to UART) | | 13 | RIN1 | I | RS-232 line data input (from remote RS-232 system) | | 14 | DOUT1 | 0 | RS-232 line data output (to remote RS-232 system) | | 15 | GND | _ | Ground | | 16 | V _{CC} | _ | Supply voltage—connect to external 5-V power supply | ## **Specifications** ### 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)⁽¹⁾ | | | | MIN | MAX | UNIT | | |------------------|--|----------|-----------------------|-----------------------|------|--| | V _{CC} | Input supply voltage (2) | | -0.3 | 6 | V | | | V_{S+} | Positive output supply voltage | | V _{CC} - 0.3 | 15 | V | | | V_{S-} | Negative output supply voltage | | -0.3 | -15 | V | | | VI | lanut voltage | Driver | -0.3 | V _{CC} + 0.3 | V | | | VI | Input voltage | Receiver | | ±30 | V | | | | Outrot valtana | DOUT | V _{S-} - 0.3 | V _{S+} + 0.3 | | | | Vo | Output voltage | ROUT | -0.3 | V _{CC} + 0.3 | V | | | | Short-circuit duration | DOUT | Unli | Unlimited | | | | T_{J} | Operating virtual junction temperature | | | 150 | °C | | | T _{stg} | Storage temperature | | -65 | 150 | °C | | Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to network GND. ## 6.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------|--|--|--------------------------|--------|------| | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | Pins 7, 8,
13, and 14 | ±15000 | | | | Electrostatic | | Other pins | ±3000 | | | V _(ESD) | discharge Charged-device mode IEC61000-4-2, air-gap | (6) | | ±1500 | V | | | | IEC61000-4-2, air-gap discharge | Pins 7, 8, | ±15000 | | | | | IEC61000-4-2, contact discharge | 13, and 14 | ±8000 | | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ### 6.3 Recommended Operating Conditions | | | | MIN | NOM | MAX | UNIT | |----------|--|----------|-----|-----|-----|------| | V_{CC} | Supply voltage | | 4.5 | 5 | 5.5 | V | | V_{IH} | High-level input voltage (DIN1, DIN2) | | 2 | | | V | | V_{IL} | Low-level input voltage (DIN1, DIN2) | | | | 0.8 | V | | | Receiver input voltage (RIN1, RIN2) | | ±3 | | ±30 | V | | _ | | MAX232EC | 0 | | 70 | 00 | | IA | Operating free-air temperature MAX232EI | | -40 | | 85 | °C | #### 6.4 Thermal Information | | | | MAX | 232E | | | |--------------------------|---|-------------|--------------|-------------|---------------|------| | THERMAL METRIC (1)(2)(3) | | D
(SOIC) | DW
(SOIC) | N
(PDIP) | PW
(TSSOP) | UNIT | | | | 16 PINS | 16 PINS | 16 PINS | 16 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 73.8 | 73.4 | 43.3 | 101.6 | °C/W | | R ₀ JC(top) | Junction-to-case (top) thermal resistance | 33.4 | 35.1 | 30 | 29.3 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 31.4 | 38.3 | 23.3 | 47.3 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application Product Folder Links: MAX232E The package thermal impedance is calculated in accordance with JESD 51-7. Submit Documentation Feedback Copyright © 2006-2016, Texas Instruments Incorporated JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. $Maximum \ power \ dissipation \ is \ a \ function \ of \ T_J(max), \ R_{\theta JA}, \ and \ T_A. \ The \ maximum \ allowable \ power \ dissipation \ at \ any \ allowable \ ambient$ temperature is $P_D = (T_J(max) - T_A)/R_{\theta,JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. ## **Thermal Information (continued)** | | | | MAX232E | | | | | | |-------------------------------------|--|-------------|--------------|-------------|---------------|------|--|--| | THERMAL METRIC ⁽¹⁾⁽²⁾⁽³⁾ | | D
(SOIC) | DW
(SOIC) | N
(PDIP) | PW
(TSSOP) | UNIT | | | | | | 16 PINS | 16 PINS | 16 PINS | 16 PINS | | | | | ΤιΨ | Junction-to-top characterization parameter | 5.8 | 9.4 | 14.4 | 1.4 | °C/W | | | | ΨЈВ | Junction-to-board characterization parameter | 31.1 | 37.7 | 23.2 | 46.6 | °C/W | | | #### 6.5 Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 10) | | PARAMETER | TEST CONDITIONS ⁽¹⁾ | | | TYP ⁽²⁾ | MAX | UNIT | |----------|----------------|--------------------------------|---|--|--------------------|-----|------| | I_{CC} | Supply current | $V_{CC} = 5.5 \text{ V}$ | All outputs open, T _A = 25°C | | 8 | 10 | mA | - Test conditions are C1 C4 = 1 μF at V $_{CC}$ = 5 V \pm 0.5 V. All typical values are at V $_{CC}$ = 5 V and T $_A$ = 25°C. #### 6.6 Electrical Characteristics: Driver over recommended ranges of supply voltage and operating free-air temperature range | PARAMETER | | | TEST CONDITIONS ⁽¹⁾ | | | TYP ⁽²⁾ | MAX | UNIT | |---------------------|------------------------------|------|--|-----------------------|-----|--------------------|-----|------| | V _{OH} | High-level output voltage | DOUT | $R_L = 3 \text{ k}\Omega \text{ to GND}$ | | 5 | 7 | | V | | V_{OL} | Low-level output voltage (3) | DOUT | $R_L = 3 \text{ k}\Omega \text{ to GND}$ | | | -7 | -5 | V | | r _o | Output resistance | DOUT | $V_{S+} = V_{S-} = 0,$ | V _O = ±2 V | 300 | | | Ω | | I _{OS} (4) | Short-circuit output current | DOUT | V _{CC} = 5.5 V, | V _O = 0 | | ±10 | | mA | | I _{IS} | Short-circuit input current | DIN | $V_I = 0$ | | | | 200 | μΑ | - Test conditions are C1 C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V. - All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25 ^{\circ}\text{C}$. - The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only. - Not more than one output should be shorted at a time. #### 6.7 Electrical Characteristics: Receiver over recommended ranges of supply voltage and operating free-air temperature range | | PARAMETER | | TEST CON | DITIONS ⁽¹⁾ | MIN | TYP ⁽²⁾ | MAX | UNIT | |-----------|---|------|---------------------------|------------------------|-----|--------------------|-----|------| | V_{OH} | High-level output voltage | ROUT | $I_{OH} = -1 \text{ mA}$ | | 3.5 | | | ٧ | | V_{OL} | Low-level output voltage | ROUT | $I_{OL} = 3.2 \text{ mA}$ | | | | 0.4 | V | | V_{IT+} | Receiver positive-going input threshold voltage | RIN | $V_{CC} = 5 V$ | $T_A = 25^{\circ}C$ | | 1.7 | 2.4 | V | | V_{IT-} | Receiver negative-going input threshold voltage | RIN | $V_{CC} = 5 V$ | $T_A = 25^{\circ}C$ | 0.8 | 1.2 | | V | | V_{hys} | Input hysteresis voltage | RIN | $V_{CC} = 5 V$ | | 0.2 | 0.5 | 1 | V | | ri | Receiver input resistance | RIN | V _{CC} = 5 V | $T_A = 25^{\circ}C$ | 3 | 5 | 7 | kΩ | - Test conditions are C1 C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 5 V and T_A = 25°C. ### 6.8 Switching Characteristics: Driver $V_{CC} = 5 \text{ V}, T_{A} = 25^{\circ}\text{C}$ | • 66 | , , , , , = 0 ° | | | | | | |-------|------------------------------------|---|-----|-----|-----|--------| | | PARAMETER | TEST CONDITIONS ⁽¹⁾ | MIN | TYP | MAX | UNIT | | SR | Driver slew rate | $R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega, \text{ See Figure 6}$ | | | 30 | V/µs | | SR(t) | Driver transition region slew rate | $R_L = 3 \text{ k}\Omega, C_L = 2.5 \text{ nF}$
See Figure 7 | | 3 | | V/µs | | | Data rate | One DOUT switching | | 250 | | kbit/s | (1) Test conditions are C1 – C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V. Copyright © 2006-2016, Texas Instruments Incorporated ## 6.9 Switching Characteristics: Receiver $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (see Figure 5)}$ | | PARAMETER | TEST CONDITIONS(1) | TYP | UNIT | |---------------------|--|------------------------|-----|------| | t _{PLH(R)} | Receiver propagation delay time, low- to high-level output | C _L = 50 pF | 500 | ns | | t _{PHL(R)} | Receiver propagation delay time, high- to low-level output | C _L = 5 0pF | 500 | ns | (1) Test conditions are C1 – C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V. # 6.10 Typical Characteristics $T_A = 25 \, ^{\circ}C$ Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated ## 7 Parameter Measurement Information - A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$. - B. C_L includes probe and jig capacitance. - C. All diodes are 1N3064 or equivalent. Figure 5. Receiver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements ## **Parameter Measurement Information (continued)** - A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$. - B. C_L includes probe and jig capacitance. Figure 6. Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements (5-µs Input) A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$. Figure 7. Test Circuit and Waveforms for t_{TLH} and t_{TLH} Measurements (20- μ s Input) ## 8 Detailed Description #### 8.1 Overview The MAX232E device is a dual driver and receiver that includes a capacitive voltage generator using four capacitors to supply TIA/EIA-232-F voltage levels from a single 5-V supply. All RS-232 pins have 15-kV HBM and IEC61000-4-2 Air-Gap discharge protection. RS-232 pins also have 8-kV IEC61000-4-2 contact discharge protection. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have shorted and open fail safe. The receiver can accept up to ±30-V inputs and decode inputs as low as ±3 V. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. Outputs are protected against shorts to ground. #### 8.2 Functional Block Diagram Figure 8. Logic Diagram (Positive Logic) ### 8.3 Feature Description #### 8.3.1 Power The power block increases and inverts the 5-V supply for the RS-232 driver using a charge pump that requires four $1-\mu F$ external capacitors. #### 8.3.2 RS-232 Driver Two drivers interface standard logic level to RS-232 levels. Internal pullup resistors on DIN inputs ensures a high input when the line is high impedance. #### 8.3.3 RS-232 Receiver Two receivers interface RS-232 levels to standard logic levels. An open or shorted to ground input results in a high output on ROUT. #### 8.4 Device Functional Modes ## 8.4.1 V_{CC} Powered by 5 V The device is in normal operation. ## 8.4.2 V_{CC} Unpowered When MAX232E is unpowered, it can be safely connected to an active remote RS-232 device. #### 8.4.3 Truth Tables Table 1 and Table 2 list the functions of this device. Table 1. Function Table for Each Driver⁽¹⁾ | INPUT
DIN | OUTPUT
DOUT | |--------------|----------------| | L | Н | | Н | L | (1) H = high level, L = low level Table 2. Function Table for Each Receiver⁽¹⁾ | INPUT
RIN | OUTPUT
ROUT | | | | |--------------|----------------|--|--|--| | L | Н | | | | | Н | L | | | | | Open | Н | | | | (1) H = high level, L = low level, Open = input disconnected or connected driver off Figure 9. Logic Diagram (Positive Logic) ## 9 Applications and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## 9.1 Application Information For proper operation add capacitors as shown in Figure 10. Pins 9 through 12 connect to UART or general purpose logic lines. RS-232 lines on pins 7, 8, 13, and 14 connect to a connector or cable. ## 9.2 Typical Application $^{^{\}dagger}$ C3 can be connected to V_{CC} or GND. Copyright © 2016, Texas Instruments Incorporated Resistor values shown are nominal. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. Figure 10. Typical Operating Circuit #### 9.2.1 Design Requirements - V_{CC} minimum is 4.5 V and maximum is 5.5 V. - Maximum recommended bit rate is 250 kbit/s. ## 9.2.2 Detailed Design Procedure The capacitor type used for C1–C4 is not critical for proper operation. The MAX232E requires 1- μ F capacitors, although capacitors up to 10 μ F can be used without harm. Ceramic dielectrics are suggested for capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (for example, 2x) nominal value. The capacitors' effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-. ## **Typical Application (continued)** Use larger capacitors (up to 10 μF) to reduce the output impedance at V_{S+} and V_{S-} . Bypass V_{CC} to ground with at least 1 μ F. In applications sensitive to power-supply noise generated by the charge pumps, decouple V_{CC} to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1–C4). ## 9.2.3 Application Curve Loopback waveform connects DOUT to RIN. Figure 11. Loopback Waveforms Submit Documentation Feedback Copyright © 2006–2016, Texas Instruments Incorporated ## 10 Power Supply Recommendations The V_{CC} voltage should be connected to the same power source used for logic device connected to DIN and ROUT pins. V_{CC} should be between 4.5 V and 5.5 V. ## 11 Layout ### 11.1 Layout Guidelines Keep the external capacitor traces short. This is more important on C1 and C2 nodes that have the fastest rise and fall times. Make the impedance from MAX232E ground pin and circuit board's ground plane as low as possible for best ESD performance. Use wide metal and multiple vias on both sides of ground pin. ## 11.2 Layout Example Figure 12. MAX232E Layout ## 12 Device and Documentation Support #### 12.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 12.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. **Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support. #### 12.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. #### 12.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 12.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. ## 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 24-Aug-2018 ## **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish (6) | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|----------------------|-----------------------------|--------------|-------------------------|---------| | MAX232ECD | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX232EC | Sample | | MAX232ECDR | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM 0 to 70 | | MAX232EC | Sample | | MAX232ECDW | ACTIVE | SOIC | DW | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX232EC | Sample | | MAX232ECDWR | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | 0 to 70 | MAX232EC | Sample | | MAX232ECDWRE4 | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX232EC | Sample | | MAX232ECDWRG4 | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX232EC | Sample | | MAX232ECN | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type 0 to 70 | | MAX232ECN | Sample | | MAX232ECNE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type 0 to 70 | | MAX232ECN | Sample | | MAX232ECPW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MA232EC | Sample | | MAX232ECPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU CU SN | Level-1-260C-UNLIM | 0 to 70 | MA232EC | Sample | | MAX232ECPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MA232EC | Sample | | MAX232EID | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX232EI | Sample | | MAX232EIDR | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX232EI | Sample | | MAX232EIDRG4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM -40 to 8 | | MAX232EI | Sample | | MAX232EIDW | ACTIVE | SOIC | DW | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX232EI | Sample | | MAX232EIDWG4 | ACTIVE | SOIC | DW | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX232EI | Sample | | MAX232EIDWR | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX232EI | Sample | ## **PACKAGE OPTION ADDENDUM** 24-Aug-2018 | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|----------------|---------| | MAX232EIN | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -40 to 85 | MAX232EIN | Samples | | MAX232EINE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -40 to 85 | MAX232EIN | Samples | | MAX232EIPW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MB232EI | Samples | | MAX232EIPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MB232EI | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. # **PACKAGE OPTION ADDENDUM** 24-Aug-2018 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2016 ## TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | MAX232ECDR | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | MAX232ECDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | MAX232ECDWRG4 | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | MAX232ECPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | MAX232ECPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | MAX232ECPWRG4 | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | MAX232EIDR | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | MAX232EIDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | MAX232EIPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 11-Mar-2016 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | MAX232ECDR | SOIC | D | 16 | 2500 | 367.0 | 367.0 | 38.0 | | MAX232ECDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | MAX232ECDWRG4 | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | MAX232ECPWR | TSSOP | PW | 16 | 2000 | 364.0 | 364.0 | 27.0 | | MAX232ECPWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | MAX232ECPWRG4 | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | MAX232EIDR | SOIC | D | 16 | 2500 | 367.0 | 367.0 | 38.0 | | MAX232EIDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | MAX232EIPWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | # D (R-PDS0-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. PW (R-PDSO-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G16) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. SMALL OUTLINE INTEGRATED CIRCUIT Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4040000-2/H SOIC - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing - per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side. - 5. Reference JEDEC registration MS-013. SOIC #### NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SOIC #### NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # N (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. #### IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.