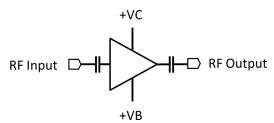


# GaAs Broadband Low Phase Noise Amplifier

# **1. Device Overview**

#### **1.1 General Description**

The APM-6849 is a single stage broadband, low phase noise LO driver amplifier designed to provide saturated +21 dBm output power. This amplifier uses GaAs HBT technology for low phase noise, and provides industry leading -170 dBc/Hz at 10 kHz offset from carrier frequency. The amplifier is also highly efficient with 21% peak PAE at 5 GHz input frequency and low DC current draw. It is optimized to provide enough power to drive the LO port of an S-diode mixer (2 – 20 GHz) and an H/L-diode mixer (2 – 32 GHz). This amplifier is operational with a variety of bias conditions for both low and high-power applications.


#### 1.2 Features

- -170 dBc/Hz phase noise at 10 kHz offset frequency
- +21 dBm output power
- Low DC power consumption
- Positive-only biasing
- No sequencing required
- Unconditionally stable
- Integrated DC blocks No bias-tees or off-chip blocking required
- Small Signal S-parameter .s2p Files: <u>APM-6849CH.s2p</u>

#### **1.3 Applications**

- Mobile test and measurement equipment
- Radar and satellite communications
- 5G Transceivers
- Driver amplifier for S, H, and L diode mixers
- Suitable as a T3 drive

### **1.4 Functional Block Diagram**



### 1.5 Part Ordering Options<sup>1</sup>

| Part<br>Number | Description             | Package  | Green Status | Product<br>Lifecycle | Export<br>Classification |
|----------------|-------------------------|----------|--------------|----------------------|--------------------------|
| APM-6849CH     | Wire Bondable Die       | Bare Die | RoHS         | Active               | EAR99                    |
| APM-6849PA     | Connectorized<br>Module | PA       | RoHS         | Active               | EAR99                    |

<sup>&</sup>lt;sup>1</sup> Refer to our <u>website</u> for a list of definitions for terminology presented in this table.



APM-6849

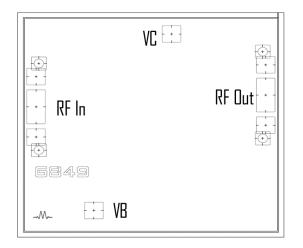


# Table of Contents

| 1. | D     | evice Overview                  | . 1 |
|----|-------|---------------------------------|-----|
|    | 1.1   | General Description             | . 1 |
|    | 1.2   | Features                        | . 1 |
|    | 1.3   | Applications                    | . 1 |
|    | 1.4   | Functional Block Diagram        | . 1 |
|    | 1.5   | Part Ordering Options           | . 1 |
| 2. | A     | PM-6849 Port Configurations and |     |
| Fι | uncti | ions                            | . З |
|    | 2.1   | APM-6849CH Port Diagram         | . 3 |
|    | 2.2   | APM-6849CH Port Functions       | . З |
|    | 2.3   | APM-6849PA Port Diagram         | . 4 |
|    | 2.4   | APM-6849PA Port Functions       | . 4 |
| З. | S     | pecifications                   | . 5 |
|    | 3.1   | Absolute Maximum Ratings        | . 5 |

### **Revision History**

| 3.2 Package Information5                                                   |
|----------------------------------------------------------------------------|
| 3.3 Recommended Operating Conditions6                                      |
| 3.4 Sequencing Requirements6                                               |
| 3.5 Electrical Specifications7                                             |
| 3.6 APM-6849CH Typical Performance<br>Plots9                               |
| 3.7 APM-6849PA Typical Performance<br>Plots10                              |
| 3.8 Time Domain plots11                                                    |
| 3.9 Typical Performance Plots of Marki<br>Mixers Driven With APM-6849PA 12 |
| 4. Application Information13                                               |
| 4.1 APM-6849CH Application Circuit13                                       |
| 5. Mechanical Data14                                                       |
| 5.1 APM-6849CH Outline Drawing 14                                          |
| 5.2 APM-6849PA Package Outline                                             |
| Drawing 14                                                                 |


| TICVISION THISTOPY |                                                 |                                             |  |
|--------------------|-------------------------------------------------|---------------------------------------------|--|
| Revision Code      | Revision Date                                   | Comment                                     |  |
| -                  | November 2019 Datasheet Initial Rele            |                                             |  |
| А                  | January 2020                                    | Added Time Domain<br>Plots                  |  |
| В                  | July 2020                                       | Updated Max Operating<br>Temperature        |  |
| С                  | July 2020 Updated Therma<br>Resistance Specific |                                             |  |
| D                  | October 2020                                    | Updated Thermal Specs,<br>Updated Min Specs |  |

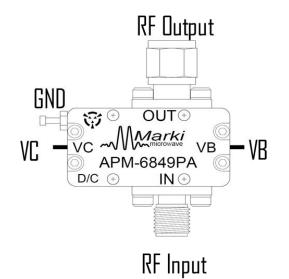


# 2. APM-6849 Port Configurations and Functions

# 2.1 APM-6849CH Port Diagram

A port diagram of the APM-6849CH is shown below.




# 2.2 APM-6849CH Port Functions

| Port   | Function                 | Description                                                                                                                                                                                                                                                                                                       | Equivalent Circuit<br>for Package |
|--------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| RF In  | RF Input                 | This is the amplifier die RF Input port. It is internally DC blocked and RF matched to 50 $\Omega$ . RF input pad is GSG with 175 $\mu$ m pitch.                                                                                                                                                                  | RF ln □  ,<br>}                   |
| VC     | Collector Supply<br>Port | Pad VC is the amplifier IC's DC voltage<br>supply pad. See section 3.6 for<br>performance at different bias conditions.                                                                                                                                                                                           |                                   |
| VB     | Base<br>Supply Port      | Port VB is the current mirror DC voltage<br>supply port that controls the collector<br>current supplied to the amplifier. VB port<br>voltage is proportional to VC port collector<br>current. VB effectively functions as a gain<br>control pin. See section 3.6 for<br>performance at different bias conditions. | -v-lv-l                           |
| RF Out | RF Output                | This is the amplifier die RF Output port. It<br>is internally DC blocked and RF matched to<br>$50 \Omega$ . The RF output pad is GSG with 175<br>µm pitch. Must have less than 7:1 VSWR<br>when operating with voltage greater than<br>+5V on port VC.                                                            | ₹¶⊢⊂ RF Dut<br>₹                  |
| GND    | Ground                   | IC backside must be connected to a DC/RF<br>ground with high thermal and electrical<br>conductivity.                                                                                                                                                                                                              | GND \downarrow                    |



### 2.3 APM-6849PA Port Diagram

A port diagram of the APM-6849PA is shown below.



#### 2.4 APM-6849PA Port Functions

| Port   | Function         | Description                                                                                                                                                                                                                                                                                                                                                             | Equivalent Circuit<br>for Package |
|--------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| RF In  | RF Input         | This is the RF input port of the amplifier. It is internally DC blocked and RF matched to 50 $\Omega$ .                                                                                                                                                                                                                                                                 | RF ln □  ,<br>}                   |
| VC     | Collector Supply | Port VC is the 1-stage amplifier DC voltage<br>supply port. The PA module VC port<br>connects internally to the IC's VC port<br>described in section 2.2 of this datasheet.                                                                                                                                                                                             | vc y<br>K                         |
| VB     | Base Supply      | Port VB is the current mirror DC voltage<br>supply port that controls the collector<br>current supplied to the amplifier. VB port<br>voltage is proportional to VC port collector<br>current. VB effectively functions as a gain<br>control pin. The VB port in the PA module<br>internally connects to the IC's VB port<br>described in section 2.2 of this datasheet. |                                   |
| RF Out | RF Output        | This is the amplifier RF output port. It is internally DC blocked and RF matched to $50 \Omega$ . Must have less than 7:1 VSWR when operating with voltage greater than +5V on port VC.                                                                                                                                                                                 | ⊂ RF Out<br>₹                     |
| GND    | Ground           | Housing or coaxial cable's outer metal layer<br>must be connected to a DC/RF ground<br>potential with high thermal and electrical<br>conductivity.                                                                                                                                                                                                                      | GND \downarrow                    |



# 3. Specifications

#### 3.1 Absolute Maximum Ratings

The Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. If these limits are exceeded, the device may become inoperable or have a reduced lifetime.

| Parameter                                     | Maximum Rating | Units |
|-----------------------------------------------|----------------|-------|
| Collector Positive Bias Voltage (VC)          | 7              | V     |
| Positive Bias Current (Ic)                    | 90             | mA    |
| Current Mirror Positive Bias Voltage (VB)     | 7              | V     |
| Current Mirror Positive Bias Current (lb)     | 4              | mA    |
| RF Input Power                                | +16            | dBm   |
| Output Load VSWR                              | 7:1            | -     |
| Operating Temperature                         | -40 to +85     | °C    |
| Storage Temperature                           | -65 to +150    | °C    |
| Thermal Resistance, $\theta_{JC}$             | 78             | °C/W  |
| Max Junction Temperature for MTTF > 1E6 Hours | 125            | °C    |

### 3.2 Package Information

| Parameter | Details                                              | Rating |
|-----------|------------------------------------------------------|--------|
| ESD       | Human Body Model (HBM), per MIL-STD-750, Method 1020 |        |
| Weight    | APM-6849PA                                           | 14.7g  |



#### 3.3 Recommended Operating Conditions

The Recommended Operating Conditions indicate the limits, inside which the device should be operated, to guarantee the performance given in Electrical Specifications Operating outside these limits may not necessarily cause damage to the device, but the performance may degrade outside the limits of the electrical specifications. For limits, above which damage may occur, see Absolute Maximum Ratings.

|                                         | Min | Nominal | Max <sup>2</sup> | Units |
|-----------------------------------------|-----|---------|------------------|-------|
| T <sub>A</sub> , Ambient Temperature    | -40 | +25     | +85              | °C    |
| Positive DC Voltage (VC)                | +3  | +5      | +6               | V     |
| Positive DC Current (Ic)                | 8   | 21      | 32               | mA    |
| Positive DC Current Mirror Voltage (VB) | +3  | +5      | +6               | V     |
| Positive DC Current Mirror Current (Ib) | 0.9 | 2       | 2.6              | mA    |

#### 3.4 Sequencing Requirements

There is no sequencing required to power up or power down the amplifier.

Amplifier must have an output load connected when operating with a VC voltage greater than +5V.

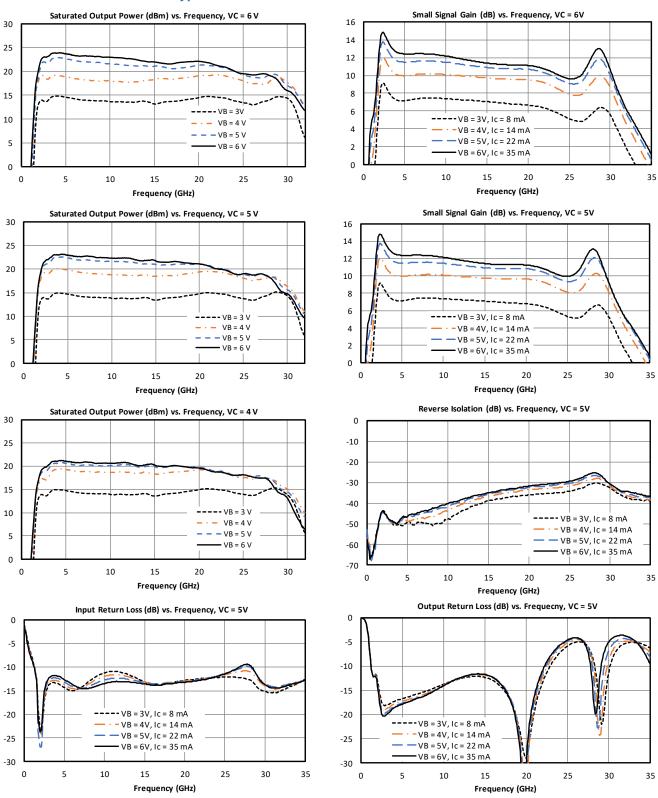
<sup>&</sup>lt;sup>2</sup> Maximum recommended operating current conditions without RF input applied. Please see typical performance plots on page 10 for relationship between RF input power and DC current draw.



### 3.5 Electrical Specifications

The electrical specifications apply at  $T_A{=}{+}25^\circ\text{C}$  in a 50 $\Omega$  system.

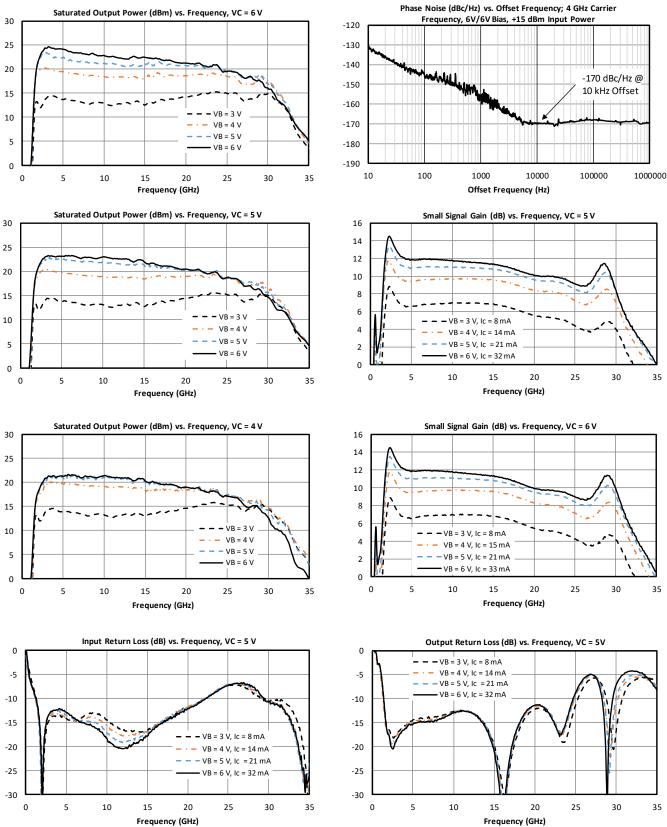
Min and Max limits apply only to our connectorized units and are guaranteed at  $T_A=+25^{\circ}C$ . Die are 100% DC tested and RF tested on a per lot basis.


| Parameter                           | Test<br>Conditions                   | Frequency        | Min | Typical | Units  |
|-------------------------------------|--------------------------------------|------------------|-----|---------|--------|
|                                     | 5V/5V Bias,<br>Input Driver          |                  | +19 | +21     |        |
| Psat <sup>3</sup>                   | (See<br>footnote)                    | 20 GHz – 29 GHz  |     | +19     | dBm    |
|                                     |                                      | 2 GHz – 20 GHz   | 9   | 11      |        |
| Small Signal Gain                   |                                      | 20 GHz – 29 GHz  |     | 10      |        |
|                                     |                                      | 2 GHz – 20 GHz   |     | 15      |        |
| Input Return Loss                   | 5V/5V                                | 20 GHz – 29 GHz  |     | 8       |        |
|                                     | bias,<br>-25 dBm                     | 2 GHz – 20 GHz   |     | 15      | dB     |
| Output Return Loss                  | Input Power                          | 20 GHz – 29 GHz  |     | 11      |        |
| Noise Figure                        | -                                    | 2 GHz – 26.5 GHz |     | 5       |        |
| Reverse Isolation                   |                                      | 2 GHz – 29 GHz   |     | 41      |        |
|                                     | 5V/4V                                | -                |     | 13      |        |
| Collector Current <sup>4</sup> , Ic | 5V/5V                                | -                |     | 21      |        |
|                                     | 5V/6V                                | -                |     | 32      |        |
|                                     | 5V/4V                                | -                |     | 1.5     | mA     |
| Current Mirror Current, Ib          | 5V/5V                                | -                |     | 2.0     |        |
| , - , -                             | 5V/6V                                | -                |     | 2.6     |        |
| Input IP3 (IIP3)                    | 5V/5V                                | 2 GHz – 29 GHz   |     | +10     |        |
| Output IP3 (OIP3)                   | bias, -15 dBm<br>Input Power         | 2 GHz – 29 GHz   |     | +21     | dBm    |
|                                     | 5V/5V bias                           | 2 GHz – 20 GHz   |     | +20     | 1      |
| Output P1dB                         |                                      | 20 GHz – 29 GHz  |     | +15     |        |
| Input Power for Saturation          | 5V/5V bias                           | 2 GHz – 29 GHz   |     | +10     | dBm    |
| Phase Noise @ 10 kHz Offset         | 5V/5V bias,<br>+9 dBm<br>Input power | 2 – 29 GHz       |     | -170    | dBc/Hz |

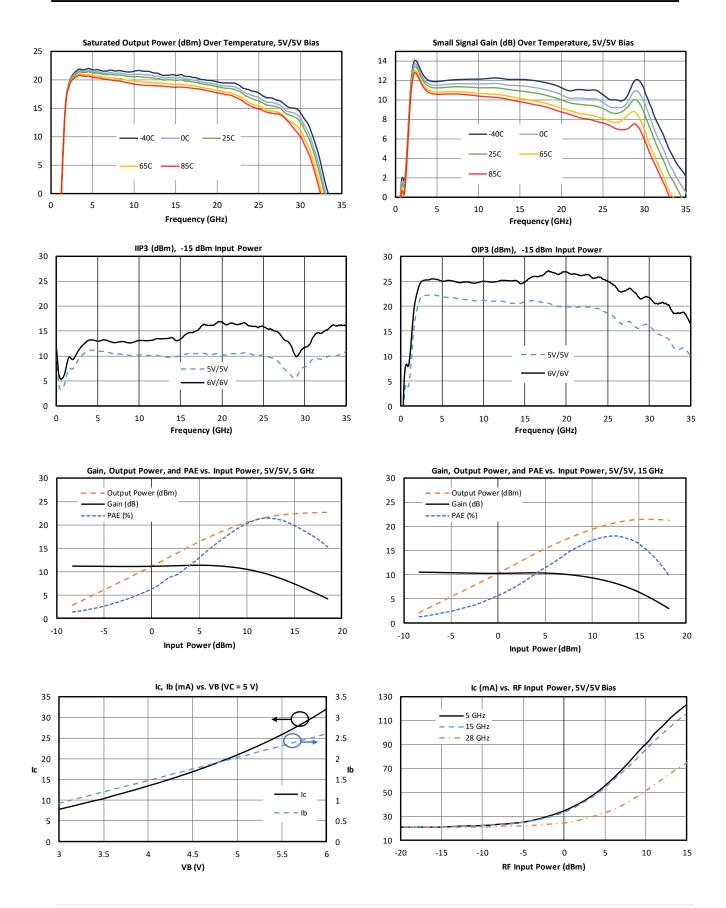
 $<sup>^3</sup>$  Saturated Output Power tested with two APM-6849PA connected in series; +6 dBm RF input power, corresponding to  ${\sim}+16$  dBm into DUT.

<sup>&</sup>lt;sup>4</sup> Bias conditions for Ic and Ib tested with no RF input power. See section 3.6 for DC current vs. RF power. Bias conditions presented as VC/VB.



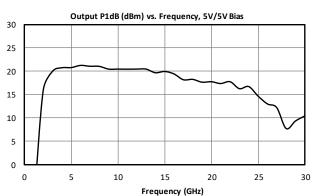

#### 3.6 APM-6849CH Typical Performance Plots<sup>5</sup>



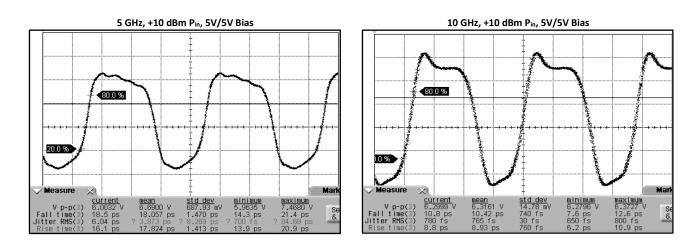

<sup>5</sup> Probe tested on chip



### 3.7 APM-6849PA Typical Performance Plots



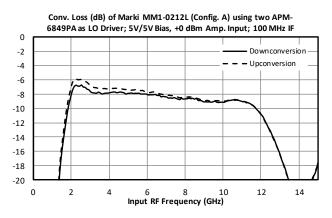


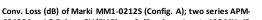



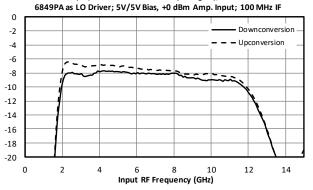


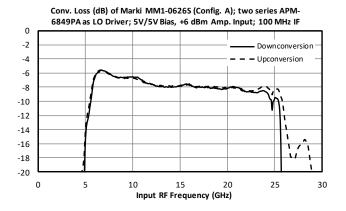


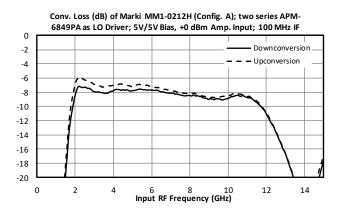




#### 3.8 Time Domain Plots<sup>6</sup>

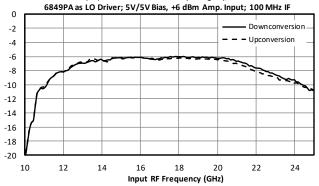


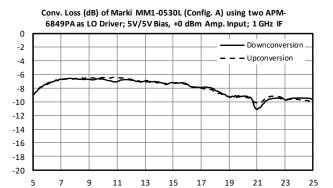


<sup>&</sup>lt;sup>6</sup> Fast rise time is desirable for linear Marki T3 mixer operation.





### 3.9 Typical Performance Plots of Marki Mixers Driven With APM-6849PA





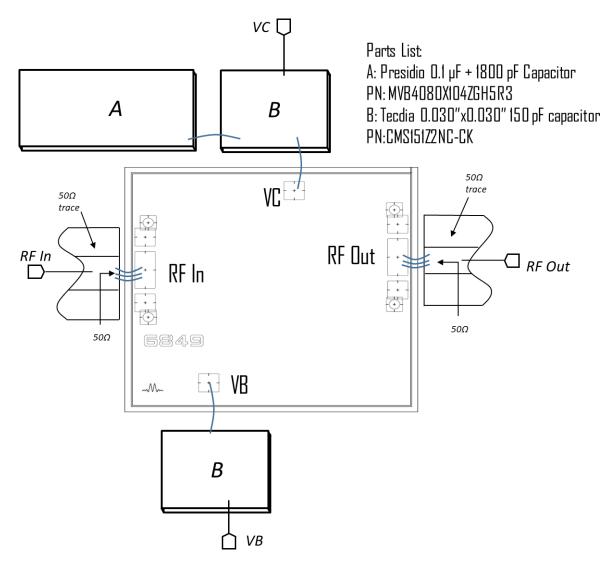





Conv. Loss (dB) of Marki MM1-1240S (Config. A); two series APM-

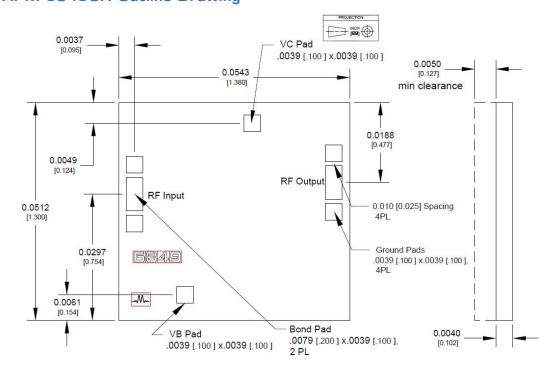




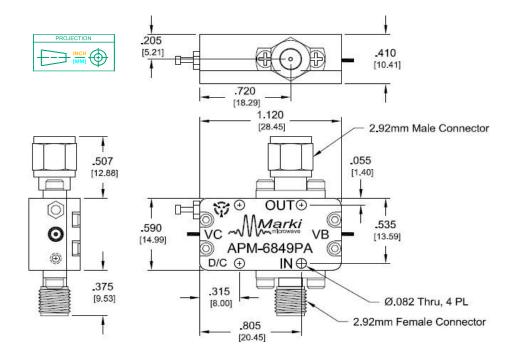

Input RF Frequency (GHz)



# 4. Application Information


### 4.1 APM-6849CH Application Circuit

Below is the recommended application circuit for the APM-6849CH.






# 5. Mechanical Data 5.1 APM-6849CH Outline Drawing



### 5.2 APM-6849PA Package Outline Drawing

