SIEMENS

Differential Magnetoresistive Sensor

FP 210 L 100-22

Features

- High operating temperature
- High output voltage
- Robust cylindrical housing
- Biasing magnet build in
- Signal amplitude independent of speed
- Easily connectable

Typical applications

- Detection of speed
- Detection of position
- Detection of sense of rotation
- Angle encoder
- Linear position sensing

Dimensions in mm

Туре	Ordering Code
FP 210 L 100-22	Q65210-L100-W4

The differential magnetoresistive sensor FP 210 L 100-22 consists of two series coupled L-type InSb/NiSb semiconductor resistors. The resistance value of the MRs, which are mounted onto an insulated ferrite substrate, can be magnetically controlled. The sensor is encapsulated in a plastic package with three in-line contacts extending from the base. The basic resistance of the total system in the unbiased state is $2\times100 \Omega$. A permanent magnet which supplies a biasing magnetic field is built into the housing.

Maximum ratings

Parameter	Symbol	Value	Unit
Operating temperature	T _A	- 40/ +140	°C
Storage temperature	T _{stg}	- 40/ +150	°C
Power dissipation ¹⁾	P _{tot}	400	mW
Supply voltage ²⁾	V _{IN}	7.5	V
Insulation voltage between terminals and casing	V_1	> 100	V
Thermal conductivity	G_{thA}	≥ 5	mW/K

Characteristics ($T_A = 25 \ ^{\circ}C$)

Nominal supply voltage	V _{IN N}	5	V
Total resistance, ($\delta = \infty$, $I \le 1$ mA)	<i>R</i> ₁₋₃	220400	Ω
$\overline{\text{Center symmetry}^{3)}} \ (\delta = \infty)$	M	≤ 10	%
Offset voltage ⁴⁾ (at $V_{\text{IN N}}$ and $\delta = \infty$)	V ₀	≤ 130	mV
Open circuit output voltage ⁵⁾ ($V_{\text{IN N}}$ and δ = 0.2 mm)	$V_{ m outpp}$	> 1000	mV
Cut-off frequency	fc	> 20	kHz

Measuring arrangements

By approaching a soft iron part close to the sensor a change in its resistance is obtained. The potential divider circuit of the magneto resistor causes a reduction in the temperature dependence of the output voltage V_{OUT} .

1) Corresponding to diagram $P_{\text{tot}} = f(T_A)$ 2) Corresponding to diagram $V_{\text{IN}} = f(T_A)$ 3) $R_{\text{IN}} = -R$

$$M = \frac{R_{1-2} - R_{2-3}}{R_{1-2}} \times 100\% \text{ for } R_{1-2} > R_{2-3}$$

4) Corresponding to measuring circuit in Fig. 2

5) Corresponding to measuring circuit in Fig. 2 and arrangement as shown in Fig. 1

1. Digital revolution counting

For digital revolution counting, the sensor should be actuated by a magnetically soft iron toothed wheel. The tooth spacing should correspond to about twice the magneto resistor intercenter spacing (see **Fig. 1**).

The two resistors of the sensor are supplemented by two additional resistors in order to obtain the sensor output voltage as a bridge voltage V_{OUT} . The output voltage V_{OUT} without excitation then is 0 V when the offset is compensated.

Fig. 1

Schematic representation of a toothed wheel actuating an FP 210 L 100-22

Fig. 2

Measuring circuit and output voltage V_{out} waveform

2. Linear distance measurement

To convert small distances into a proportional electric signal, a small soft iron part of definite width (e.g. b = 1.8 mm) is moved over the face of the sensor.

Proportional signals for distances up to 1.5 mm can be obtained in this way. The sinusoidal output signal gives a voltage proportional to distance in the zero crossover region (see **Fig. 3**).

Fig. 3

Arrangement for analogue application

Maximum supply voltage versus temperature

 $V_{\rm IN} = f(T_{\rm A}), \, \delta = \infty$

Semiconductor Group

Output voltage (typical) versus temperature $V_{\text{OUTpp}} = f(T_{\text{A}}), \delta = 0.2 \text{ mm}$ V_{OUTpp} at $T_{\text{A}} = 25 \text{ °C} \triangleq 100\%$

Total resistance (typical) versus temperature

Output voltage (typical) versus

airgap $V_{\text{OUTpp}} = f(\delta), T_{\text{A}} = 25 \text{ °C}$ $V_{\text{OUTpp}} \text{ at } \delta = 0.2 \text{ mm} \triangleq 100\%$

Max. power dissipation versus temperature $P = f(T) = \infty$

 $P_{\text{tot}} = f(T_A), \, \delta = \infty$

