Power Amplifier, 1 W DC - 22 GHz

Features

- High Gain: 13 dB (VDD = 12 V)
- P1dB: 27 dBm (VDD = 12 V)
- P_{SAT}: 30 dBm (V_{DD} = 12 V)
- Output IP3: +39 dBm (VDD = 12 V)
- Bias Voltage: V_{DD} = 9 V 12 V
- Bias Current: I_{DSQ} = 400 mA
- 50 Ω Matched Input / Output
- Temperature Compensated Output Power Detector
- Lead-Free 5 mm 32-lead AQFN Package
- RoHS* Compliant

Description

The MAAP-011248 is a 1 W distributed power amplifier offered in a lead-free 5 mm 32-lead AQFN package. The power amplifier operates from DC to 22 GHz and provides 13 dB of linear gain and 30 dBm of saturated output power. The device is fully matched across the band and includes a temperature compensated output power detector.

The MAAP-011248 can be used as a power amplifier stage or as a driver stage in higher power applications. This device is ideally suited for test and measurement, EW, ECM, and radar applications.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

Ordering Information

Part Number	Package
MAAP-011248-000PPR	Bulk
MAAP-011248-EV1PPR	Sample Board

Preliminary - Rev. V1P

Functional Schematic

Pin Configuration^{1,2}

Pin No.	Pin Name	Description
5	RFIN	RF Input
13	V _{G1}	Gate Voltage
21	RFout/Vdd	RF Output / Drain Voltage
26	DET	Power Detector
30	AUX	Auxiliary
1, 4, 6, 8, 9, 16, 17, 20, 24, 25, 32	GND	Ground
2, 3, 7, 10 - 12, 14, 15, 18, 19, 22, 23, 27 - 29, 31	N/C	No Connection

 MACOM recommends connecting all no connection pins to ground.

2. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

*Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

¹

Power Amplifier, 1 W DC - 22 GHz

Preliminary - Rev. V1P

Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DD} = 12 V$, $I_{DSQ}^3 = 400 mA$, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	2 GHz 12 GHz 18 GHz 22 GHz	dB	_	12.0 12.5 13.0 13.0	_
Psat	2 GHz 12 GHz 18 GHz 22 GHz P _{IN} = +20 dBm	2 GHz 12 GHz 18 GHz dBm — 22 GHz P _{IN} = +20 dBm		31.0 33.0 32.0 30.0	_
P1dB	2 GHz 12 GHz 18 GHz 22 GHz	2 GHz 2 GHz 8 GHz 2 GHz		28.0 30.0 27.0 27.0	_
OIP3	2 GHz 12 GHz 18 GHz 22 GHz 3 = + 14 dBm/tone (10 MHz Tone Spacing)		_	41.0 40.0 39.0 39.0	_
PAE	2 GHz 12 GHz 18 GHz 22 GHz P⊪ = + 20 dBm	%	_	17.0 25.0 17.0 13.5	_
Input Return Loss	P _{IN} = - 20 dBm	dB	—	15	—
Output Return Loss	P _{IN} = - 20 dBm	dB	—	15	—
I _{DD} (with RF drive)	P _{IN} = + 20 dBm	mA	_	500	_
IG1	_	mA	_	8	_

3. Set IDSQ according to bias procedures in page 4.

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

2

Power Amplifier, 1 W DC - 22 GHz

Preliminary - Rev. V1P

Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DD} = 10 V$, $I_{DSQ}^3 = 400 mA$, $Z_0 = 50 \Omega$

Parameter	arameter Test Conditions		Min.	Тур.	Max.
Gain	2 GHz 12 GHz 18 GHz 22 GHz	dB	_	12.0 12.0 13.0 13.0	_
Psat	2 GHz 12 GHz 18 GHz 22 GHz PIN = +20 dBm	2 GHz 12 GHz 18 GHz 22 GHz P _{IN} = +20 dBm 		30.0 32.0 31.0 28.0	_
P1dB	2 GHz 12 GHz 18 GHz 22 GHz	dBm —		26.5 29.0 26.5 25.0	_
OIP3	2 GHz 12 GHz 18 GHz 22 GHz P _{IN} = + 14 dBm/tone (10 MHz Tone Spacing)		_	50.0 43.0 44.0 40.0	_
PAE	2 GHz 12 GHz 18 GHz 22 GHz Pin = + 20 dBm		_	17.8 20.0 19.5 11.8	_
Input Return Loss	P _{IN} = - 20 dBm	dB	_	15	_
Output Return Loss	P _{IN} = - 20 dBm	dB	_	15	—
IDD (with RF drive)	P _{IN} = + 20 dBm	mA	—	500	—
IG1	_		_	8	_

Maximum Operating Ratings

3

Parameter	Rating
Input Power	25 dBm
Junction Temperature ^{4,5}	+150°C
Operating Temperature	-40°C to +85°C

4. Operating at nominal conditions with junction temperature \leq +150°C will ensure MTTF > 1 x 10⁶ hours.

5. Junction Temperature $(T_J) = T_C + \Theta_{JC} * ((V * I) - (P_{OUT} - P_{IN}))$ Typical thermal resistance $(\Theta_{JC}) = 7^{\circ}C/W$. a) For $T_C = +85^{\circ}C$,

 $T_J = +122^{\circ}C @ 12 V, I = 0.52 A, P_{OUT} = 30 dBm, P_{IN} = 20 dBm$

Absolute Maximum Ratings^{6,7}

Parameter	Absolute Maximum		
Input Power	28 dBm		
Drain Voltage	+16 V		
Gate Voltage	-5 to 0 V		
Junction Temperature ⁸	+175°C		
Storage Temperature	-65°C to +125°C		

6. Exceeding any one or combination of these limits may cause permanent damage to this device.

 MACOM does not recommend sustained operation near these survivability limits.

 Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Power Amplifier, 1 W DC - 22 GHz

Application Schematic

Bill of Materials^{9,10,11}

Part	Value	Size	Comment
C1, C2	1 µF	0402	bypass
U1	—	_	MAAP-011248

9. C1 & C2 are required for operation below 1 GHz.

10. High power external bias tee was used for measurements.

11. External DC block was used on input.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

Operating the MAAP-011248

Turn-on

- 1. Apply V_{G1} (-4.5 V).
- 2. Increase V_{DD} to 10 V.
- 3. Set I_{DSQ} by adjusting V_{G1} more positive (typically -3.6 V for I_{DSQ} = 400 mA).
- 4. Apply RF_{IN} signal.

Turn-off

- 1. Remove RF_{IN} signal.
- 2. Decrease V_{G1} to -4.5 V.
- 3. Decrease V_{DD} to 0 V.

Biasing Conditions

Recommended biasing conditions are V_{DD} = 10 V, I_{DSQ} = 400 mA (controlled with V_{G1}).

 V_{DD} Bias must be applied through a resonant free high inductance on the RF output line.

By-pass capacitor C1 for the auxiliary pad is for low frequency operation extension (below 1 GHz).

Recommended PCB Information

RF input and output are 50 Ω transmission lines. Single layer 8 mil Rogers RO4008 with 1/2 oz. Cu. Use copper filled vias under ground paddle.

Grounding

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200- μ m) diameter vias under the device, assuming an 8-mil (200- μ m) thick RF layer to ground.

⁴

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Power Amplifier, 1 W DC - 22 GHz

Preliminary - Rev. V1P

MACOM

Input Return Loss

Isolation

15

20

25

Output Return Loss

+25°0

-40°C

5

Gain

20

15

5

0

0

S21 (dB) 10

10

Frequency (GHz)

S Parameters @ Low Frequency

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed

⁵

Power Amplifier, 1 W DC - 22 GHz

Preliminary - Rev. V1P

Typical Performance Curves: V_{DD} = 10 V, I_{DSQ} = 400 mA, V_{G1} = -3.6 V typical

Noise Figure

PSAT OVER TEmperature

2nd Harmonic

6

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Output IP3 vs. P_{OUT} / Tone

Power Amplifier, 1 W DC - 22 GHz

Preliminary - Rev. V1P

Typical Performance Curves: V_{DD} = 10 V, I_{DSQ} = 400 mA, V_{G1} = -3.6 V typical

Power Compression @ 2 GHz

Power Compression @ 22 GHz Current 35 1.0 POUT (dBm), Gain (dB), PAE (%) 30 12 G 0.8 22 25 Current (A) 0.6 20 15 0.4 10 0.2 5 0 0.0 0 5 10 15 20 25 0 5 10 15 Input Power (dBm) Input Power (dBm)

Preliminary Information

7

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

25

20

Power Amplifier, 1 W DC - 22 GHz

Preliminary - Rev. V1P

Lead-Free 5 mm 32-Lead AQFN Package[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAu.

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

8

Power Amplifier, 1 W DC - 22 GHz

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

9

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.