FEATURES

Complete Dual Matching ADCs
Low Power Dissipation: 215 mW (+3 V Supply)
Single Supply: 2.7 V to 5.5 V
Differential Nonlinearity Error: 0.4 LSB
On-Chip Analog Input Buffers
On-Chip Reference
Signal-to-Noise Ratio: 57.8 dB
Over Nine Effective Bits
Spurious-Free Dynamic Range: -73 dB
No Missing Codes Guaranteed
28-Lead SSOP

PRODUCT DESCRIPTION

The AD9201 is a complete dual channel, 20 MSPS, 10-bit CMOS ADC. The AD9201 is optimized specifically for applications where close matching between two ADCs is required (e.g., I / Q channels in communications applications). The 20 MHz sampling rate and wide input bandwidth will cover both narrowband and spread-spectrum channels. The AD9201 integrates two 10-bit, 20 MSPS ADCs, two input buffer amplifiers, an internal voltage reference and multiplexed digital output buffers.

Each ADC incorporates a simultaneous sampling sample-andhold amplifier at its input. The analog inputs are buffered; no external input buffer op amp will be required in most applications. The ADCs are implemented using a multistage pipeline architecture that offers accurate performance and guarantees no missing codes. The outputs of the ADCs are ported to a multiplexed digital output buffer.

The AD9201 is manufactured on an advanced low cost CMOS process, operates from a single supply from 2.7 V to 5.5 V , and consumes 215 mW of power (on 3 V supply). The AD9201 input structure accepts either single-ended or differential signals, providing excellent dynamic performance up to and beyond its 10 MHz Nyquist input frequencies.

REV. D

[^0] otherwise under any patent or patent rights of Analog Devices.

PRODUCT HIGHLIGHTS

1. Dual 10-Bit, 20 MSPS ADCs

A pair of high performance 20 MSPS ADCs that are optimized for spurious free dynamic performance are provided for encoding of I and Q or diversity channel information.
2. Low Power

Complete CMOS Dual ADC function consumes a low 215 mW on a single supply (on 3 V supply). The AD9201 operates on supply voltages from 2.7 V to 5.5 V .
3. On-Chip Voltage Reference

The AD9201 includes an on-chip compensated bandgap voltage reference pin programmable for 1 V or 2 V .
4. On-chip analog input buffers eliminate the need for external op amps in most applications.
5. Single 10-Bit Digital Output Bus

The AD9201 ADC outputs are interleaved onto a single output bus saving board space and digital pin count.
6. Small Package

The AD9201 offers the complete integrated function in a compact 28-lead SSOP package.
7. Product Family

The AD9201 dual ADC is pin compatible with a dual 8-bit ADC (AD9281) and has a companion dual DAC product, the AD9761 dual DAC.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999

AD9201-SPECIFICATIONS
 (AVDD $=+3 \mathrm{~V}$, DVDD $=+3 \mathrm{~V}, \mathrm{~F}_{\text {SAMPLE }}=20$ MSPS, VREF $=2 \mathrm{~V}, \mathrm{INB}=0.5 \mathrm{~V}, \mathrm{~T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, internal ref, differential input signal, unless otherwise noted)

Parameter	Symbol	Min	Typ	Max	Units	Condition
RESOLUTION			10		Bits	
CONVERSION RATE	$\mathrm{F}_{\text {S }}$			20	MHz	
DC ACCURACY Differential Nonlinearity Integral Nonlinearity Differential Nonlinearity (SE) Integral Nonlinearity (SE) Zero-Scale Error, Offset Error Full-Scale Error, Gain Error Gain Match Offset Match	DNL INL DNL INL E_{ZS} E_{FS}		$\begin{aligned} & \pm 0.4 \\ & 1.2 \\ & \pm 0.5 \\ & \pm 1.5 \\ & \pm 1.5 \\ & \pm 3.5 \\ & \pm 0.5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 2.5 \\ & \pm 3.8 \\ & \pm 5.4 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \% \text { FS } \\ & \% \text { FS } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$	$\begin{aligned} & \mathrm{REFT}=1 \mathrm{~V}, \mathrm{REFB}=0 \mathrm{~V} \\ & \mathrm{REFT}=1 \mathrm{~V}, \mathrm{REFB}=0 \mathrm{~V} \end{aligned}$
ANALOG INPUT Input Voltage Range Input Capacitance Aperture Delay Aperture Uncertainty (Jitter) Aperture Delay Match Input Bandwidth (-3 dB) Small Signal (-20 dB) Full Power (0 dB)	AIN C_{IN} t_{AP} t_{AJ} BW	-0.5	2 4 2 240 245	AVDD/2	V pF ns ps ps MHz MHz	
INTERNAL REFERENCE Output Voltage (1 V Mode) Output Voltage Tolerance (1 V Mode) Output Voltage (2 V Mode) Output Voltage Tolerance (2 V Mode) Load Regulation (1 V Mode) Load Regulation (2 V Mode)	VREF VREF		$\begin{aligned} & 1 \\ & \pm 10 \\ & 2 \\ & \pm 15 \\ & \pm 15 \end{aligned}$	± 28	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { REFSENSE = VREF } \\ & \text { REFSENSE = GND } \\ & 1 \mathrm{~mA} \text { Load Current } \\ & 1 \mathrm{~mA} \text { Load Current } \end{aligned}$
POWER SUPPLY Operating Voltage Supply Current Power Consumption Power-Down Power Supply Rejection	AVDD DRVDD $\mathrm{I}_{\text {AVDD }}$ $\mathrm{I}_{\mathrm{DRVDD}}$ P_{D} PSR	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 71.6 \\ & 0.1 \\ & 215 \\ & 15.5 \\ & 0.8 \end{aligned}$	5.5 5.5 245 1.3	V V mA mA mW mW \% FS	$\begin{aligned} & \text { AVDD }- \text { DVDD } \leq 2.3 \mathrm{~V} \\ & \text { AVDD }=3 \mathrm{~V} \\ & \text { AVDD }=\text { DVDD }=3 \mathrm{~V} \\ & \text { STBY }=\text { AVDD, Clock }=\text { AVSS } \end{aligned}$
DYNAMIC PERFORMANCE ${ }^{1}$ Signal-to-Noise and Distortion $\mathrm{f}=3.58 \mathrm{MHz}$ $\mathrm{f}=10 \mathrm{MHz}$ Signal-to-Noise $\mathrm{f}=3.58 \mathrm{MHz}$ $\mathrm{f}=10 \mathrm{MHz}$ Total Harmonic Distortion $\begin{aligned} & \mathrm{f}=3.58 \mathrm{MHz} \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$ Spurious Free Dynamic Range $\begin{aligned} & \mathrm{f}=3.58 \mathrm{MHz} \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$ Two-Tone Intermodulation Distortion ${ }^{2}$ Differential Phase Differential Gain Crosstalk Rejection	$\begin{aligned} & \text { SINAD } \\ & \text { SNR } \\ & \text { THD } \\ & \text { SFDR } \\ & \\ & \text { IMD } \\ & \text { DP } \\ & \text { DG } \end{aligned}$	55.6 55.9 -66	$\begin{aligned} & 57.3 \\ & 55.8 \\ & \\ & 57.8 \\ & 56.2 \\ & \\ & -69 \\ & -66.3 \\ & \\ & -73 \\ & -70.5 \\ & -62 \\ & 0.1 \\ & 0.05 \\ & 68 \end{aligned}$	-63.3	dB Degree \% dB	$\mathrm{f}=44.49 \mathrm{MHz}$ and 45.52 MHz NTSC 40 IRE Mod Ramp $\mathrm{F}_{\mathrm{S}}=14.3 \mathrm{MHz}$

Parameter	Symbol	Min	Typ	Max	Units	Condition
DYNAMIC PERFORMANCE (SE) ${ }^{3}$ Signal-to-Noise and Distortion $\mathrm{f}=3.58 \mathrm{MHz}$ Signal-to-Noise $\mathrm{f}=3.58 \mathrm{MHz}$ Total Harmonic Distortion $\mathrm{f}=3.58 \mathrm{MHz}$ Spurious Free Dynamic Range $\mathrm{f}=3.58 \mathrm{MHz}$	$\begin{aligned} & \text { SINAD } \\ & \text { SNR } \\ & \text { THD } \\ & \text { SFDR } \end{aligned}$		52.3 55.5 -55 -58		dB dB dB dB	
DIGITAL INPUTS High Input Voltage Low Input Voltage DC Leakage Current Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{IN}} \end{aligned}$	2.4	± 6	0.3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$	
LOGIC OUTPUT (with DVDD $=3 \mathrm{~V}$) High Level Output Voltage $\left(\mathrm{I}_{\mathrm{OH}}=50 \mu \mathrm{~A}\right)$ Low Level Output Voltage $\left(\mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$		$\begin{aligned} & 2.88 \\ & 0.095 \end{aligned}$		V V	
LOGIC OUTPUT (with DVDD $=5 \mathrm{~V}$) High Level Output Voltage $\left(\mathrm{I}_{\mathrm{OH}}=50 \mu \mathrm{~A}\right)$ Low Level Output Voltage $\left(\mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}\right)$ Data Valid Delay MUX Select Delay Data Enable Delay Data High-Z Delay	V_{OH} V_{OL} t_{OD} $t_{M D}$ $t_{\text {ED }}$ $\mathrm{t}_{\mathrm{DHZ}}$		$\begin{aligned} & 4.5 \\ & \\ & 0.4 \\ & 11 \\ & 7 \\ & 13 \\ & 13 \end{aligned}$		V V ns ns ns ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$. Output Level to 90% of Final Value
CLOCKING Clock Pulsewidth High Clock Pulsewidth Low Pipeline Latency	$\begin{aligned} & \mathrm{t}_{\mathrm{CH}} \\ & \mathrm{t}_{\mathrm{CL}} \end{aligned}$	$\begin{aligned} & 22.5 \\ & 22.5 \end{aligned}$	3.0		ns ns Cycles	

NOTES

${ }^{1}$ AIN differential 2 V p-p, REFT $=1.5 \mathrm{~V}, \mathrm{REFB}=-0.5 \mathrm{~V}$.
${ }^{2}$ IMD referred to larger of two input signals.
${ }^{3} \mathrm{SE}$ is single ended input, REFT $=1.5 \mathrm{~V}, \mathrm{REFB}=-0.5 \mathrm{~V}$.
Specifications subject to change without notice.

Figure 1. ADC Timing

ABSOLUTE MAXIMUM RATINGS*

Parameter	With Respect to	Min	Max	Units
AVDD	AVSS	-0.3	+6.5	V
DVDD	DVSS	-0.3	+6.5	V
AVSS	DVSS	-0.3	+0.3	V
AVDD	DVDD	-6.5	+6.5	V
CLK	AVSS	-0.3	AVDD + 0.3	V
Digital Outputs	DVSS	-0.3	DVDD + 0.3	V
AINA, AINB	AVSS	-1.0	AVDD + 0.3	V
VREF	AVSS	-0.3	AVDD + 0.3	V
REFSENSE	AVSS	-0.3	AVDD + 0.3	V
REFT, REFB	AVSS	-0.3	AVDD + 0.3	V
Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature 10 sec			+300	${ }^{\circ} \mathrm{C}$

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
AD9201ARS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SSOP AD9201-EVAL	RS-28

*RS = Shrink Small Outline.

PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS

Pin		
No.	Name	Description
1	DVSS	Digital Ground
2	DVDD	Digital Supply
3	D0	Bit 0 (LSB)
4	D1	Bit 1
5	D2	Bit 2
6	D3	Bit 3
7	D4	Bit 4
8	D5	Bit 5
9	D6	Bit 6
10	D7	Bit 7
11	D8	Bit 8
12	D9	Bit 9 (MSB)
13	SELECT	Hi I Channel Out, Lo Q Channel Out
14	CLOCK	Clock
15	SLEEP	Hi Power Down, Lo Normal Operation
16	INA-I	I Channel, A Input
17	INB-I	I Channel, B Input
18	REFT-I	Top Reference Decoupling, I Channel
19	REFB-I	Bottom Reference Decoupling, I Channel
20	AVSS	Analog Ground
21	REFSENSE	Reference Select
22	VREF	Internal Reference Output
23	AVDD	Analog Supply
24	REFB-Q	Bottom Reference Decoupling, Q Channel
25	REFT-Q	Top Reference Decoupling, Q Channel
26	INB-Q	Q Channel, B Input
27	INA-Q	Q Channel, A Input
28	CHIP-SELECT	Hi-High Impedance, Lo-Normal Operation

DEFINITIONS OF SPECIFICATIONS

INTEGRAL NONLINEARITY (INL)

Integral nonlinearity refers to the deviation of each individual code from a line drawn from "zero" through "full scale." The point used as "zero" occurs $1 / 2$ LSB before the first code transition. "Full scale" is defined as a level $11 / 2$ LSBs beyond the last code transition. The deviation is measured from the center of each particular code to the true straight line.

DIFFERENTIAL NONLINEARITY (DNL, NO MISSING CODES)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. It is often specified in terms of the resolution for which no missing codes (NMC) are guaranteed.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9201 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or

