

TO-251-3L Plastic-Encapsulate MOSFETS

CJD02N60 N-Channel Power MOSFET

General Description

The high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition , this advanced MOSFET is designed to withstand high energy in avalanche and commutation modes . The new energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for high voltage, high speed switching applications in power suppliers, converters and PWM motor controls , these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional and safety margin against unexpected voltage transients.

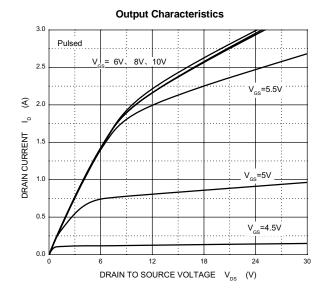
FEATURE

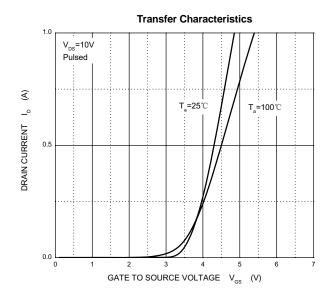
- Robust High Voltage Termination
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperature

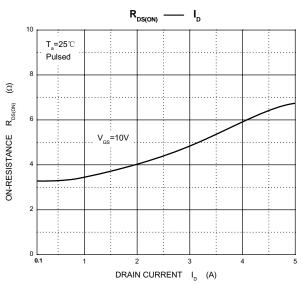
Maximum ratings (T_a=25℃ unless otherwise noted)

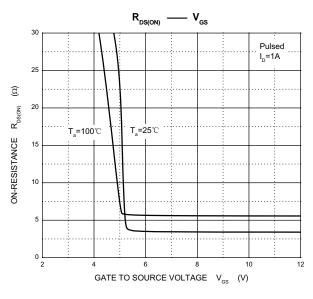
Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	600	V	
Gate-Source Voltage	V _{GS}	±20	V	
Continuous Drain Current	I _D	2	A	
Pulsed Drain Current	I _{DM}	8		
Single Pulsed Avalanche Energy*	E _{AS}	128	mJ	
Power Dissipation	P _D	1.25	W	
Thermal Resistance from Junction to Ambient	R _{0JA}	100	°C/W	
Junction Temperature	TJ	150	°C	
Storage Temperature	T _{stg}	-50 ~+150		

^{*} E_{AS} condition: T_j =25°C, V_{DD} =50V,L=64mH, I_{AS} =2A, R_G =25 Ω , Starting T_J = 25°C


Electrical characteristics (T_a=25°C unless otherwise noted)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Off characteristics						•
Drain-source breakdown voltage	V(BR) DSS	V _{GS} = 0V, I _D =250µA	600			V
Zero gate voltage drain current	I _{DSS}	V _{DS} =600V, V _{GS} =0V			25	μA
		V _{DS} =480V, V _{GS} =0V,			100	
		T _j =125℃			100	
Gate-body leakage current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±100	nA
On characteristics (note1)						
Gate-threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250μA	2.0		4.0	V
Static drain-source on-resistance	RDS(on)	Vgs =10V, ID =1A		3.6	4.4	Ω
Forward transconductance	g _{FS}	V _{DS} =50V, I _D =1A	1			S
Dynamic characteristics (note 2)	-		•	'		•
Input capacitance	C _{iss}	V _{DS} =25V,V _{GS} =0V, f =1MHz		435		pF
Output capacitance	C _{oss}			56		
Reverse transfer capacitance	C _{rss}			9.2		
Switching characteristics (note 2)						•
Total gate charge	Qg	V _{DS} =480V, V _{GS} =10V, I _D =2.4A		40	50	nC
Gate-source charge	Q _{gs}			4.2		
Gate-drain charge	Q_{gd}			8.4		
Turn-on delay time	t _{d(on)}	V_{DD} =300V, I_{D} =2A, V_{GS} =10V, R_{G} =18 Ω		12		ns
Turn-on rise time	tr			21		
Turn-off delay time	td(off)			30		
Turn-off fall time	tf			24		
Drain-Source Diode Characteristics	-		•	'		•
Drain-source diode forward voltage(note1)	V _{SD}	V _{GS} =0V, I _S =2A			1.6	V
Continuous drain-source diode forward					2	А
current	I _S				2	
Pulsed drain-source diode forward current	I _{SM}				8	Α


Notes:


- 1. Pulse Test : Pulse Width≤300µs, duty cycle ≤2%.
- 2. Guaranteed by design, not subject to production.

