

www.ti.com

1.8-V OPERATIONAL AMPLIFIERS WITH RAIL-TO-RAIL INPUT AND OUTPUT

Check for Samples: LMV931-Q1, LMV932-Q1, LMV934-Q1

FEATURES

- Qualified for Automotive Applications
- 1.8-V, 2.7-V, and 5-V Specifications
- Rail-to-Rail Output Swing
 - 600-Ω Load: 80 mV From Rail
 - 2-kΩ Load: 30 mV From Rail
- V_{ICR}: 200 mV Beyond Rails
- Gain Bandwidth: 1.4 MHz
- Supply Current: 100 µA/Amplifier
- Max V_{IO}: 4 mV
- Space-Saving Packages
 - LMV931: SOT-23 and SC-70
 - LMV932: SOIC
 - LMV934: SOIC

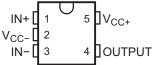
APPLICATIONS

- Industrial (Utility/Energy Metering)
- Automotive
- Communications (Optical Telecom, Data/Voice Cable Modems)
- Consumer Electronics (PDAs, PCs, CD-R/W, Portable Audio)
- Supply-Current Monitoring
- Battery Monitoring

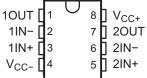
DESCRIPTION

The LMV93x devices are low-voltage low-power operational amplifiers that are well suited for today's low-voltage and/or portable applications. Specified for operation of 1.8 V to 5 V, they can be used in portable applications that are powered from a single-cell Li-ion or two-cell batteries. They have rail-to-rail input and output capability for maximum signal swings in low-voltage applications. The LMV93x input common-mode voltage extends 200 mV beyond the rails for increased flexibility. The output can swing rail-to-rail unloaded and typically can reach 80 mV from the rails, while driving a $600-\Omega$ load (at 1.8-V operation).

During 1.8-V operation, the devices typically consume a quiescent current of 103 μ A per channel, and yet they are able to achieve excellent electrical specifications, such as 101-dB open-loop DC gain and 1.4-MHz gain bandwidth. Furthermore, the amplifiers offer good output drive characteristics, with the ability to drive a 600- Ω load and 1000-pF capacitance with minimal ringing.


The LMV93x devices are offered in the latest packaging technology to meet the most demanding space-constraint applications. The LMV931 is offered in standard SOT-23 and SC-70 packages. The LMV932 is available in the traditional SOIC package. The LMV934 is available in the traditional SOIC package and the TSSOP package.

The LMV93x devices are characterized for operation from –40°C to 125°C, making the part universally suited for commercial, industrial, and automotive applications.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LMV931...DBV (SOT-23-5) OR DCK (SC-70) PACKAGE (TOP VIEW)

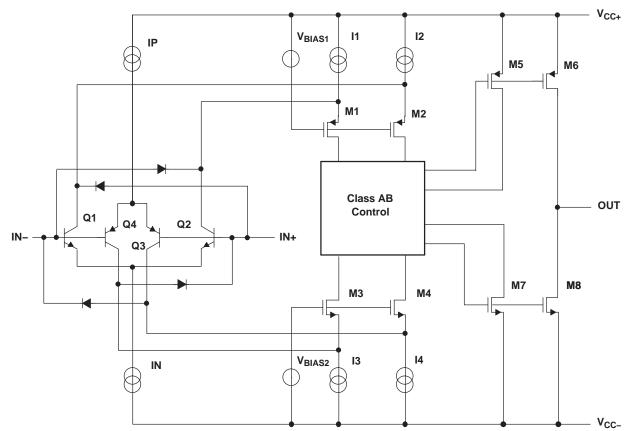
LMV932...D (SOIC) PACKAGE (TOP VIEW)

LMV934...D (SOIC) OR PW (TSSOP) PACKAGE

	(10		vv)	
		$\tau \tau$		L
10UT			14] 40UT
1IN-	2] 4IN-
1IN+	[]3		12] 4IN+
V _{CC+} 2IN+	4		11] v _{cc-}
2IN+	5		10] 3IN+
2IN-	6		9] 3IN-
20UT	[7		8] 30UT

LMV931-Q1 LMV932-Q1 LMV934-Q1

SLOS462C - MARCH 2005 - REVISED DECEMBER 2010


		OF	RDERING INFO	DRMATION "	
T _A		PACKAGE ⁽²	2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
	Cingle	SOT-23 – DBV	Reel of 3000	LMV931QDBVRQ1	RBB_
	Single	SC-70 – DCK	Reel of 3000	LMV931QDCKRQ1	RB_
-40°C to 125°C	Dual	SOIC – D	Reel of 2500	LMV932QDRQ1	MV932Q
	Qued	SOIC – D	Reel of 2500	LMV934QDRQ1	LMV934Q
	Quad	TSSOP – PW	Reel of 2000	LVM934QPWRQ1	LMV934Q

....

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(3) DBV/DCK: The actual top-side marking has one additional character that designates the wafer fab/assembly site.

SIMPLIFIED SCHEMATIC

www.ti.com

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$V_{CC+} - V_{CC-}$	Supply voltage ⁽²⁾			5.5	V
V _{ID}	Differential input voltage ⁽³⁾		Supply	voltage	
VI	Input voltage range, either input		$V_{CC-} - 0.2$	$V_{CC+} + 0.2$	V
	Duration of output short circuit (one amplifier) to V_{CC\pm} $^{(4)}$ $^{(5)}$		Unlim	nited	
		D package (8 pin)		97	
		D package (14 pin)		86	
θ_{JA}	Package thermal impedance ⁽⁵⁾ (6)	DBV package		206	°C/W
		DCK package		252	
		PW package		112.6	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.

(3) Differential voltages are at IN+ with respect to IN-.

(4) Applies to both single-supply and split-supply operation. Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability.

(5) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

(6) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V_{CC}	Supply voltage (V _{CC+} – V _{CC-})	1.8	5	V
T _A	Operating free-air temperature	-40	125	°C

ESD PROTECTION

			TYP	UNIT
Human-Body Model			2000	V
Machine Model			200	V
Charged Device Medal	LMV934QPWRQ1	All pins	500	V
Charged-Device Model		Corner Pins	750	v

SLOS462C - MARCH 2005 - REVISED DECEMBER 2010

www.ti.com

ELECTRICAL CHARACTERISTICS

	PARAMETER		$V_{CC+}/2, V_0 = V_{CC+}/2, F$ TEST COND		T _A	MIN	TYP	MAX	UNIT
					25°C		1	4	
			LMV931 (single)		Full range			6	.,
V _{IO}	Input offset vo	Itage		N	25°C		1	5.5	mV
			LMV932 (dual), LMV9	934 (quad)	Full range			7.5	
α _{VIO}	Average temp coefficient of in voltage				25°C		5.5		µV/°C
	5		$V_{IC} = V_{CC+} - 0.8 V$		25°C		15	35	
IB	Input bias curr	ent			25°C			65	nA
					Full range			75	
					25°C		13	25	
Ю	Input offset cu	rrent			Full range			40	nA
	Cupply ourroad				25°C		103	185	
cc	Supply current (per channel)	L			Full range		100	205	μA
	<u> </u>				25°C	60	78	200	
			0 ≤ V _{IC} ≤ 0.6 V, 1.4 V	≤ V _{IC} ≤ 1.8 V	–40°C to	00	70		
CMRR	Common-mod	e rejection			85°C	55			dB
	ratio		$0.2 \le V_{IC} \le 0.6 \text{ V}, 1.4$	$V \le V_{IC} \le 1.6 V$	–40°C to 125°C	55			
			$-0.2 \le V_{IC} \le 0 \text{ V}, 1.8 \text{ V}$	$V \le V_{IC} \le 2 V$	25°C	50	72		
	Supply-voltage	e rejection		0.5.1/	25°C	72	100		d٦
SVR	ratio		$1.8 \text{ V} \leq \text{V}_{\text{CC+}} \leq 5 \text{ V}, \text{ V}$	_{IC} = 0.5 V	Full range	65			dB
					25°C	V _{CC-} - 0.2	-0.2 to 2.1	$V_{CC+} + 0.2$	
/ _{ICR}	Common-mod	e input	CMRR ≥ 50 dB		-40°C to 85°C	V _{CC-}		V _{CC+}	V
	voltage range				-40°C to 125°C	V _{CC-} + 0.2		V _{CC+} - 0.2	
				R _L = 600 Ω	25°C	77	101		
				to 0.9 V	Full range	73			
		LMV931		$R_L = 2 k\Omega$	25°C	80	105		
	Large-signal		$V_0 = 0.2 V$ to 1.6 V,	$R_L = 2 R\Omega^2$ to 0.9 V	Full range	75			
٩ _٧	voltage gain		$V_0 = 0.2 \text{ v to 1.6 v},$ $V_{IC} = 0.5 \text{ V}$	D 600 0	25°C	75	90		dB
	0 0			$R_{L} = 600 \Omega$ to 0.9 V	Full range	72			
		LMV932, LMV934			25°C	72	100		
		_		$R_L = 2 k\Omega$ to 0.9 V	Full range	75	100		
		I			25°C	1.65	1.72		
				High level	Full range	1.63	1.72		
			$R_L = 600 \Omega \text{ to } 0.9 \text{ V},$ $V_{ID} = \pm 100 \text{ mV}$		25°C	1.05	0.077	0.105	
				Low level	Full range		0.077	0.105	
/ ₀	Output swing				25°C	1.75	1.77	0.120	V
				High level		1.75	1.77		
			$R_L = 2 k\Omega \text{ to } 0.9 \text{ V},$ $V_{ID} = \pm 100 \text{ mV}$		Full range 25°C	1.74	0.004	0.025	
				Low level			0.024	0.035	
					Full range		~	0.040	
			$V_0 = 0 V,$ $V_{ID} = 100 mV$	Sourcing	25°C	4	8		
os	Output short-c	ircuit			Full range	3.3			mA
	current		$V_0 = 1.8 V,$	Sinking	25°C	7	9		
			$V_{ID} = -100 \text{ mV}$	Ŭ	Full range	5			
GBW	Gain bandwidt	th product			25°C		1.4		MHz

Submit Documentation Feedback

4

Copyright © 2005–2010, Texas Instruments Incorporated

LMV931-Q1 LMV932-Q1 LMV934-Q1 SLOS462C - MARCH 2005 - REVISED DECEMBER 2010

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

 $V_{CC+} = 1.8 \text{ V}, V_{CC-} = 0 \text{ V}, V_{IC} = V_{CC+}/2, V_0 = V_{CC+}/2, R_1 > 1 \text{ M}\Omega$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
SR	Slew rate ⁽¹⁾		25°C	0.35		V/µs
Φ _m	Phase margin		25°C	67		0
	Gain margin		25°C	7		dB
Vn	Equivalent input noise voltage	f = 1 kHz, V_{IC} = 0.5 V	25°C	60		nV/√Hz
I _n	Equivalent input noise current	f = 1 kHz	25°C	0.06		pA/√Hz
THD	Total harmonic distortion	$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} = 600 \Omega, \\ \text{V}_{\text{ID}} = 1 \text{V}_{\text{p-p}} $	25°C	0.023		%
	Amplifier-to-amplifier isolation ⁽²⁾		25°C	123		dB

(1) Number specified is the slower of the positive and negative slew rates. (2) Input referred, $V_{CC+} = 5 V$ and $R_L = 100 k\Omega$ connected to 2.5 V. Each amplifier is excited, in turn, with a 1-kHz signal to produce $V_{O} = 3 V_{p-p}$.

SLOS462C - MARCH 2005 - REVISED DECEMBER 2010

www.ti.com

ELECTRICAL CHARACTERISTICS

	PARAMETER	ł	TEST CONDI	nd R _L > 1 MΩ TIONS	T _A	MIN	TYP	MAX	UNIT
					25°C		1	4	
			LMV931 (single)		Full range			6	.,
V _{IO}	Input offset vo	Itage			25°C		1	5.5	mV
			LMV932 (dual), LMV93	34 (quad)	Full range			7.5	
α _{VIO}	Average temp coefficient of in voltage				25°C		5.5		μV/°C
			$V_{IC} = V_{CC+} - 0.8 V$		25°C		15	35	
I _{IB}	Input bias curr	ent			25°C			65	nA
	·				Full range			75	
					25°C		8	25	
Ю	Input offset cu	rrent			Full range			40	nA
	Supply current	ł			25°C		105	190	
СС	(per channel)				Full range			210	μA
					25°C	60	81		
OMDD	Common-mod	e rejection	$0 \le V_{IC} \le 1.5 \text{ V}, 2.3 \text{ V}$	≤ V _{IC} ≤ 2.7 V	–40°C to 85°C	55			٦b
CMRR	ratio		$0.2 \le V_{\rm IC} \le 1.5 \rm V, 2.3 \rm V$	$V \le V_{\rm IC} \le 2.5 \ V$	–40°C to 125°C	55			
			$-0.2 \le V_{IC} \le 0 \text{ V}, 2.7 \text{ V}$	$V \le V_{\rm IC} \le 2.9 \ {\rm V}$	25°C	50	74		
,	Supply-voltage	e rejection	1.8 V ≤ V _{CC+} ≤ 5 V, V _{IC}	- 0.5 \/	25°C	72	100		dB
SVR	ratio	-	$1.0 V \le V_{CC+} \le 5 V, V_{IC}$	c = 0.5 V	Full range	65			uБ
					25°C	$V_{CC-} - 0.2$	-0.2 to 3	$V_{CC+} + 0.2$	
/ _{ICR}	Common-mod voltage range	e input	CMRR ≥ 50 dB		–40°C to 85°C	V _{CC} -		V _{CC+}	V
		1			–40°C to 125°C	V _{CC-} + 0.2		V _{CC+} – 0.2	
				$R_L = 600 \ \Omega$	25°C	87	104		
		LMV931		to 1.35 V	Full range	86			
		LIVIVUUU		$R_L = 2 k\Omega$	25°C	92	110		
A _V	Large-signal		$V_0 = 0.2 \text{ V to } 2.5 \text{ V}$	to 1.35 V	Full range	91			dB
v	voltage gain		V() = 0.2 V to 2.0 V	$R_L = 600 \ \Omega$	25°C	78	90		άĐ
		LMV932,		to 1.35 V	Full range	75			
		LMV934		$R_L = 2 k\Omega$	25°C	81	100		
				to 1.35 V	Full range	78			
				High level	25°C	2.55	2.62		
			$R_{L} = 600 \Omega$ to 1.35 V,		Full range	2.53			
			$V_{ID} = \pm 100 \text{ mV}$	Low level	25°C		0.083	0.11	
/ ₀	Output swing				Full range			0.13	V
0	2 alpar oning		Full range 0.13 R _L = 2 kΩ to 1.35 V, High level 25°C 2.65 2.675 Full range 2.64 2.64 2.64 2.64	•					
		$R_{L} = 2 \text{ k}\Omega \text{ to } 1.35 \text{ V},$ $V_{ID} = \pm 100 \text{ mV}$ High level $\begin{array}{c} 25^{\circ}\text{C} & 2.65 \\ \hline \text{Full range} & 2.64 \\ \hline 25^{\circ}\text{C} & 2.65 \\ \hline \text{Full range} & 2.64 $							
			$V_{ID} = \pm 100 \text{ mV}$	Low level	25°C		0.025	0.04	
					Full range			0.045	
			$V_{O} = 0 V,$	Sourcing	25°C	20	30		
OS	Output short-c	ircuit	$V_{ID} = 100 \text{ mV}$	200.0119	Full range	15			mA
00	current		V _O = 2.7 V,	Sinking	25°C	18	25		11/3
			$V_{ID} = -100 \text{ mV}$	Simily	Full range	12			
GBW	Gain bandwidt	h product			25°C		1.4		MHz

6

Copyright © 2005–2010, Texas Instruments Incorporated

LMV931-Q1 LMV932-Q1 LMV934-Q1 SLOS462C - MARCH 2005-REVISED DECEMBER 2010

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = $V_{CC+}/2$, V_O = $V_{CC+}/2$, and R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
SR	Slew rate ⁽¹⁾		25°C	0.4		V/µs
Φ _m	Phase margin		25°C	70		o
	Gain margin		25°C	7.5		dB
Vn	Equivalent input noise voltage	f = 1 kHz, V_{IC} = 0.5 V	25°C	57		nV/√Hz
I _n	Equivalent input noise current	f = 1 kHz	25°C	0.082		pA/√Hz
THD	Total harmonic distortion	$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} = 600 \Omega, \\ \text{V}_{\text{ID}} = 1 \text{V}_{\text{p-p}} $	25°C	0.022		%
	Amplifier-to-amplifier isolation ⁽²⁾		25°C	123		dB

(1) Number specified is the slower of the positive and negative slew rates.

(2) Input referred, $V_{CC+} = 5 \text{ V}$ and $R_L = 100 \text{ k}\Omega$ connected to 2.5 V. Each amplifier is excited, in turn, with a 1-kHz signal to produce $V_O = 3 V_{P-P}$.

LMV931-Q1 LMV932-Q1 LMV934-Q1

SLOS462C - MARCH 2005 - REVISED DECEMBER 2010

www.ti.com

ELECTRICAL CHARACTERISTICS

$V_{CC+} = 5 \text{ V}, V_{CC-} = 0 \text{ V}, V_{IC} = V_{CC+}/2, V_O = V_{CC+}/2, \text{ and } R_L > 1 \text{ M}\Omega$ (unless otherwise noted)
--

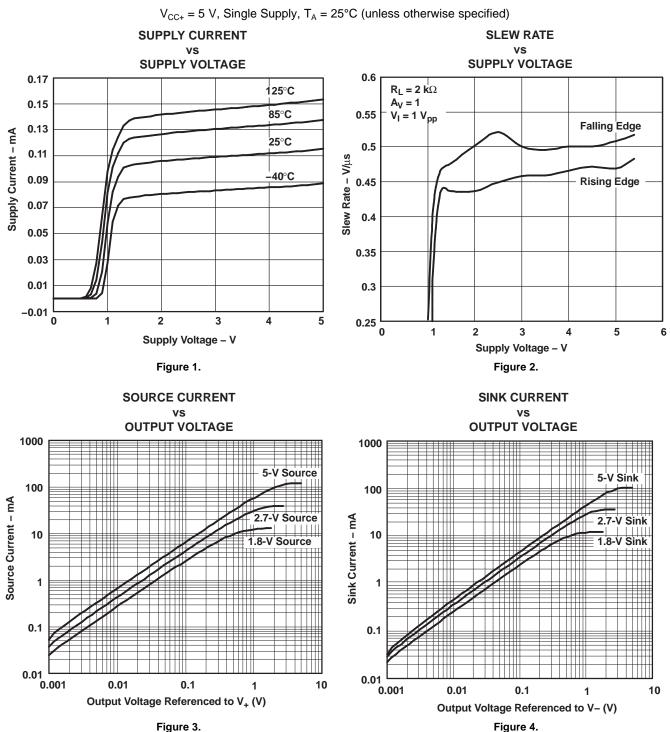
	PARAMETER	2	TEST CONDI	TIONS	TA	MIN	TYP	MAX	UNI
					25°C		1	4	
			LMV931 (single)		Full range			6	.,
/ _{IO}	Input offset vo	oltage			25°C		1	5.5	mV
			LMV932 (dual), LMV93	34 (quad)	Full range			7.5	
α _{VIO}	Average temp coefficient of offset voltage	input			25°C		5.5		μV/°(
			$V_{IC} = V_{CC+} - 0.8 V$		25°C		15	35	
IB	Input bias cur	rent			25°C			65	nA
					Full range			75	
					25°C		9	25	
10	Input offset c	urrent			Full range			40	nA
			1.0.0.000		25°C		116	210	
	Supply currer	nt	LMV931		Full range			230	
CC	(per channel)				25°C		116	225	μA
			LMV932, LMV934		Full range			275	
					25°C	60	86		
CMRR	Common-mo	de	$0 \le V_{IC} \le 3.8 \text{ V}, 4.6 \text{ V} \le 1000 \text{ V}$	$\leq V_{IC} \leq 5 V$	-40°C to 85°C	55			dD
	rejection ratio	1	$0.3 \le V_{\rm IC} \le 3.8 \text{ V}, 4.6 \text{ V}$	$/ \leq V_{\rm IC} \leq 4.7 \ V$	–40°C to 125°C	55			dB
			$-0.2 \le V_{IC} \le 0 \text{ V}, 5 \text{ V} \le$	$V_{\rm IC} \le 5.2 \ {\rm V}$	25°C	50	78		
	Supply-voltag	le	1.8 V ≤ V _{CC+} ≤ 5 V, V _{IC}	- 0 5 \/	25°C	72	100		dB
SVR	rejection ratio	1	$1.0 V \leq V_{CC+} \leq 5 V, V_{CC+}$	c = 0.3 v	Full range	65			uВ
					25°C	$V_{CC-} - 0.2$	-0.2 to 5.3	$V_{CC+} + 0.2$	
/ _{ICR}	Common-moevoltage range		CMRR ≥ 50 dB		−40°C to 85°C	V _{CC} -		V _{CC+}	V
					–40°C to 125°C	V _{CC-} + 0.3		V _{CC+} – 0.3	
				$R_L = 600 \ \Omega$	25°C	88	102		
		LMV931		to 2.5 V	Full range	87			
				$R_L = 2 k\Omega$	25°C	94	113		
Δ	Large-signal		V _O = 0.2 V to 4.8 V	to 2.5 V	Full range	93			dB
4 _V	voltage gain		$v_0 = 0.2 \ v \ 10 \ 4.0 \ V$	$R_L = 600 \ \Omega$	25°C	81	90		uВ
		LMV932,		to 2.5 V	Full range	78			
		LMV934		$R_L = 2 k\Omega$	25°C	85	100		
				to 2.5 V	Full range	82			
				High lovel	25°C	4.855	4.89		
			$R_{L} = 600 \Omega$ to 2.5 V,	High level	Full range	4.835			
			$V_{ID} = \pm 100 \text{ mV}$		25°C		0.12	0.16	
,	Output and			Low level	Full range			0.18	V
′o	Output swing			Lline lavel	25°C	4.945	4.967		V
			$R_1 = 2 k\Omega$ to 2.5 V,	High level	Full range	4.935			
			$V_{ID}^{L} = \pm 100 \text{ mV}$		25°C		0.037	0.065	
				Low level	Full range			0.075	

Copyright © 2005–2010, Texas Instruments Incorporated

www.ti.com

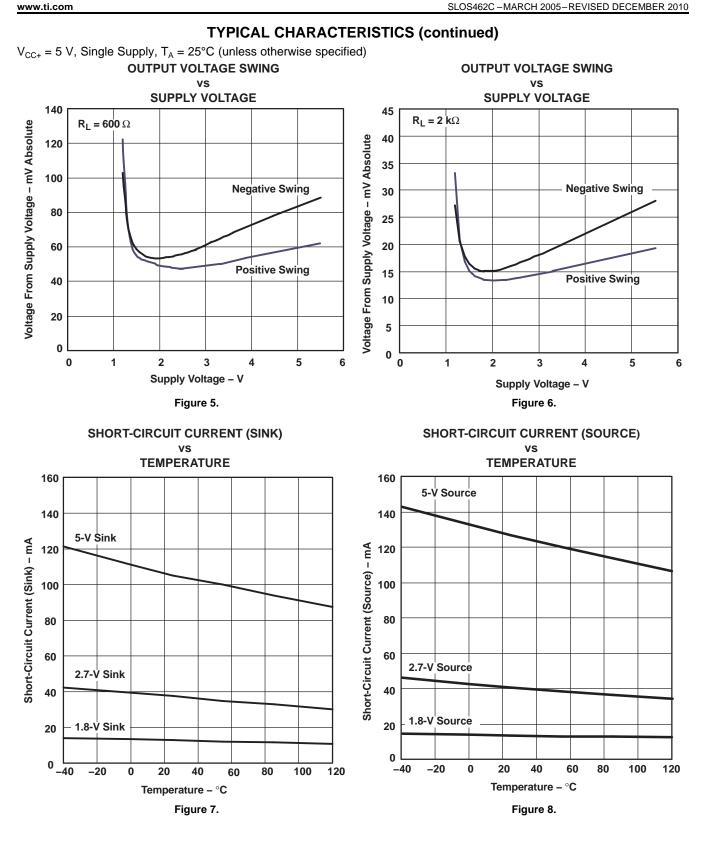
ELECTRICAL CHARACTERISTICS (continued)

|--|

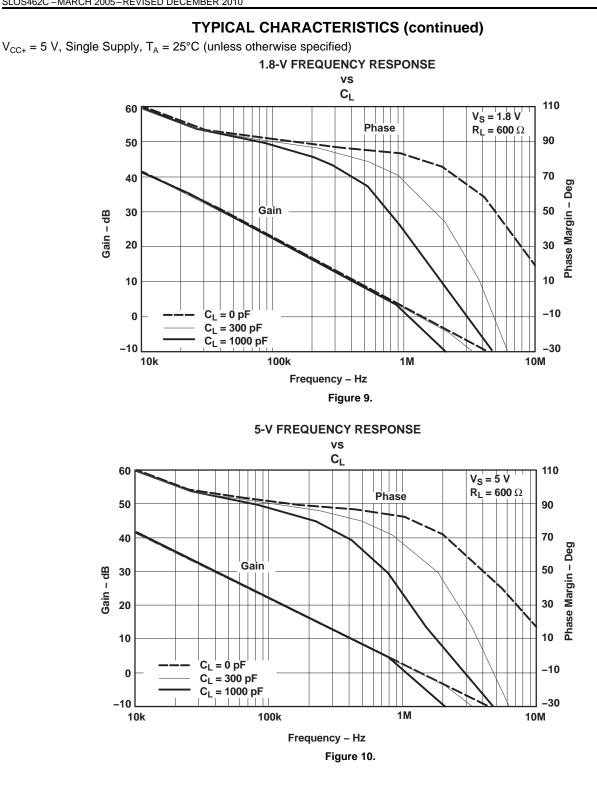

	PARAMETER	र	TEST CON	DITIONS	TA	MIN	TYP	MAX	UNIT
			V _O = 0 V, V _{ID} = 100 mV	Sourcing	25°C	80	100		
		LMV931		Sourcing	Full range	68			
		LIVIV931	V _O = 5 V,	Sinking	25°C	58	65		
	Output short-circuit		$V_{ID} = -100 \text{ mV}$	Sirking	Full range	45			m۸
I _{OS}	current		$V_{O} = 0 V,$	Sourcing	25°C	75	100		mA
		LMV932,	$V_{ID} = 100 \text{ mV}$		Full range	68			
		LMV934	V _O = 5 V,	Sinking	25°C	50	65		
			$V_{ID} = -100 \text{ mV}$	Siriking	Full range		60		
GBW	/ Gain bandwidth product				25°C		1.5		MHz
SR	Slew rate ⁽¹⁾				25°C		0.42		V/µs
Φ _m	Φ _m Phase margin				25°C		71		٥
	Gain margin				25°C		8		dB
Vn	Equivalent input noise voltage		f = 1 kHz, V _{IC} = 0.5 V		25°C		50		nV/√Hz
I _n	Equivalent input noise current		f = 1 kHz		25°C		0.07		pA/√Hz
THD	HD Total harmonic distortion		$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} \\ \text{V}_{\text{ID}} = 1 \text{V}_{\text{p-p}} $	= 600 Ω,	25°C		0.022		%
	Amplifier-to-a isolation ⁽²⁾	mplifier			25°C		123		dB

(1) Number specified is the slower of the positive and negative slew rates.

(2) Input referred, $V_{CC+} = 5$ V and $R_L = 100$ k Ω connected to 2.5 V. Each amplifier is excited, in turn, with a 1-kHz signal to produce $V_O = 3$ V_{p-p} .

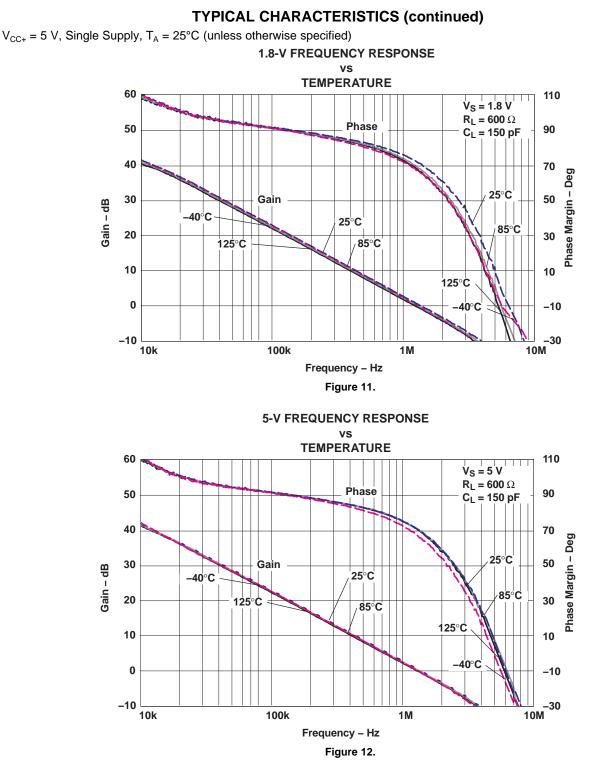

www.ti.com

TYPICAL CHARACTERISTICS


LMV931-Q1 LMV932-Q1 LMV934-Q1 SLOS462C – MARCH 2005–REVISED DECEMBER 2010

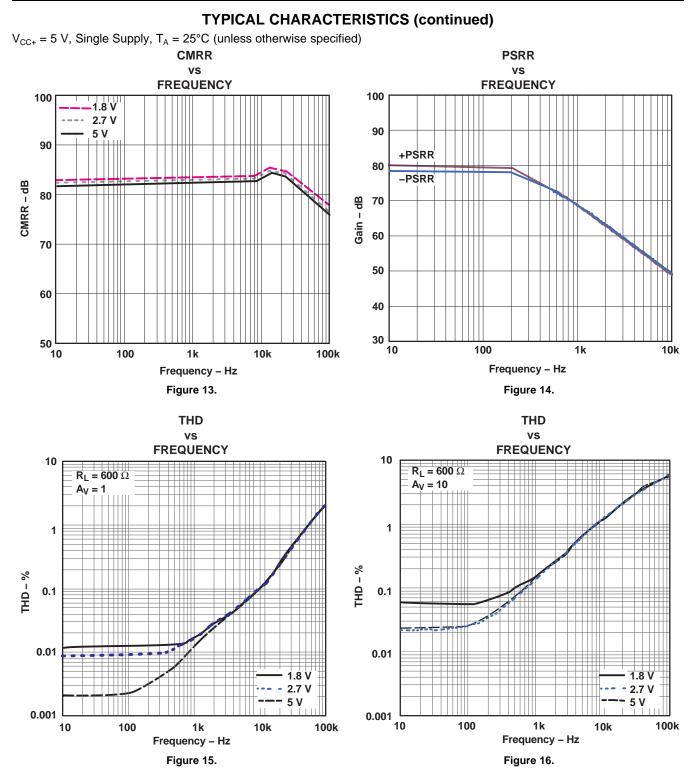
LMV931-Q1 LMV932-Q1 LMV934-Q1 SLOS462C - MARCH 2005-REVISED DECEMBER 2010

www.ti.com



Copyright © 2005–2010, Texas Instruments Incorporated

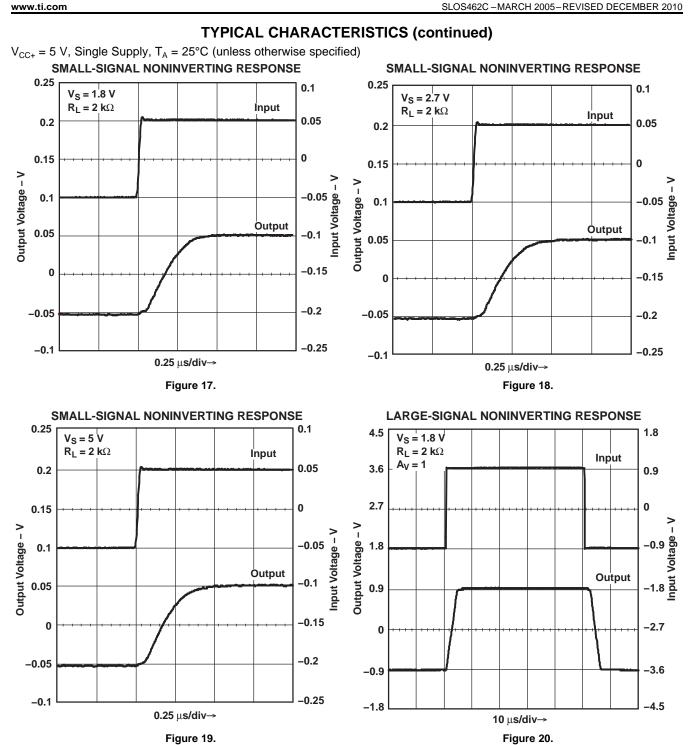
Product Folder Link(s): LMV931-Q1 LMV932-Q1 LMV934-Q1



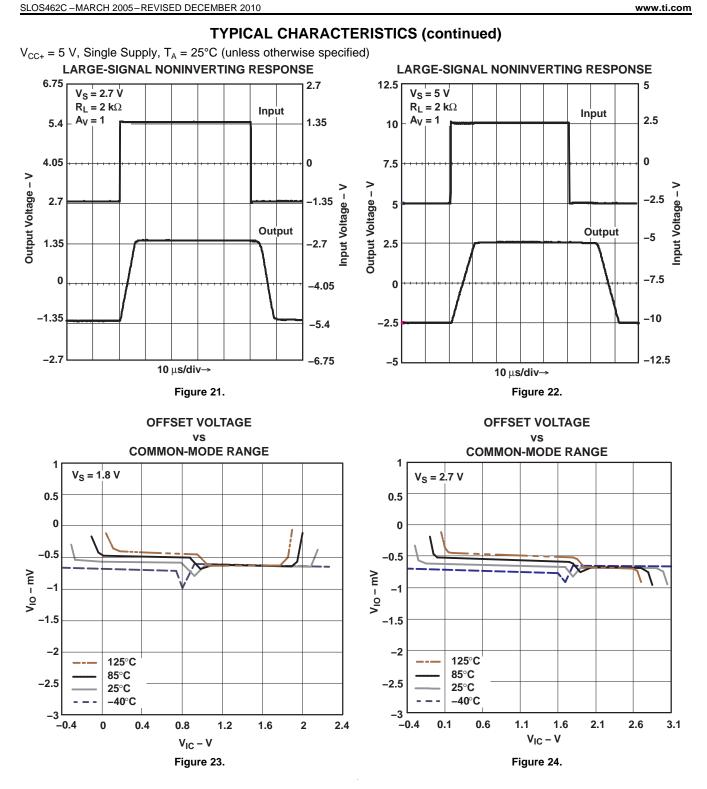
LMV931-Q1 LMV932-Q1 LMV934-Q1 SLOS462C - MARCH 2005-REVISED DECEMBER 2010

TEXAS INSTRUMENTS

www.ti.com


14 Submit Documentation Feedback

Copyright © 2005–2010, Texas Instruments Incorporated

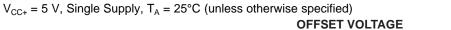

Product Folder Link(s): LMV931-Q1 LMV932-Q1 LMV934-Q1

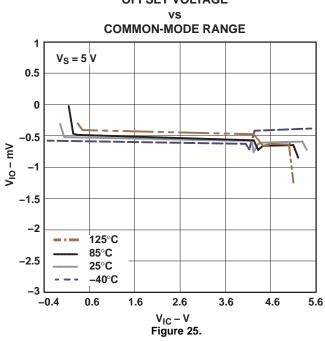
LMV931-Q1 LMV932-Q1 LMV934-Q1 SLOS462C – MARCH 2005–REVISED DECEMBER 2010

LMV931-Q1 LMV932-Q1 LMV934-Q1

16

Texas


INSTRUMENTS



LMV931-Q1 LMV932-Q1 LMV934-Q1 SLOS462C – MARCH 2005–REVISED DECEMBER 2010

TYPICAL CHARACTERISTICS (continued)

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LMV931QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV931QDCKRQ1	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV932QDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV934QDRQ1	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV934QPWRQ1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and pa

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com

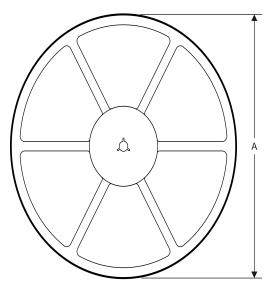
7-Feb-2012

OTHER QUALIFIED VERSIONS OF LMV931-Q1, LMV932-Q1, LMV934-Q1 :

• Catalog: LMV931, LMV932, LMV934

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product


PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

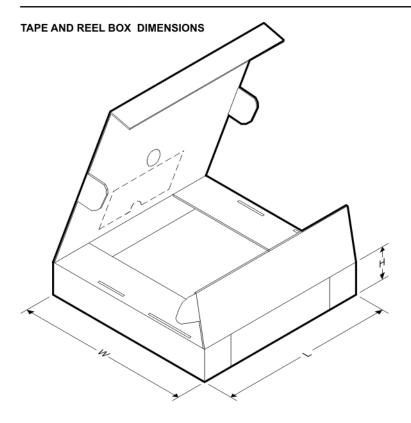
REEL DIMENSIONS

Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

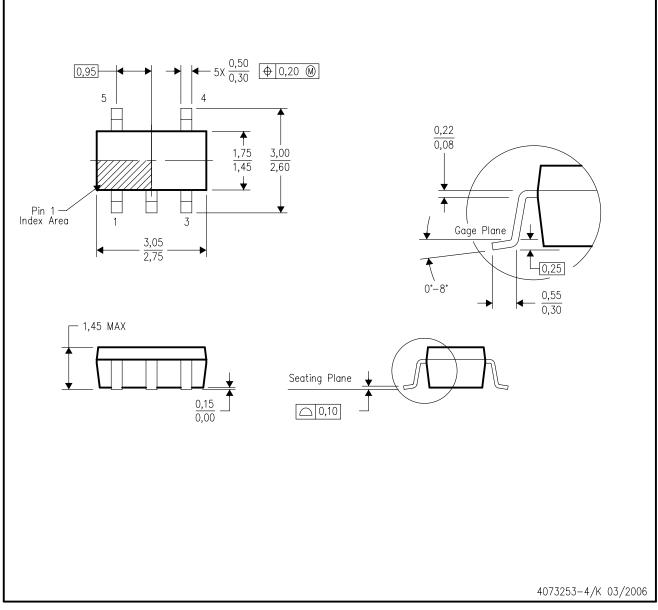

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMV932QDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LMV934QDRQ1	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LMV934QPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012



*All dimensions are nominal

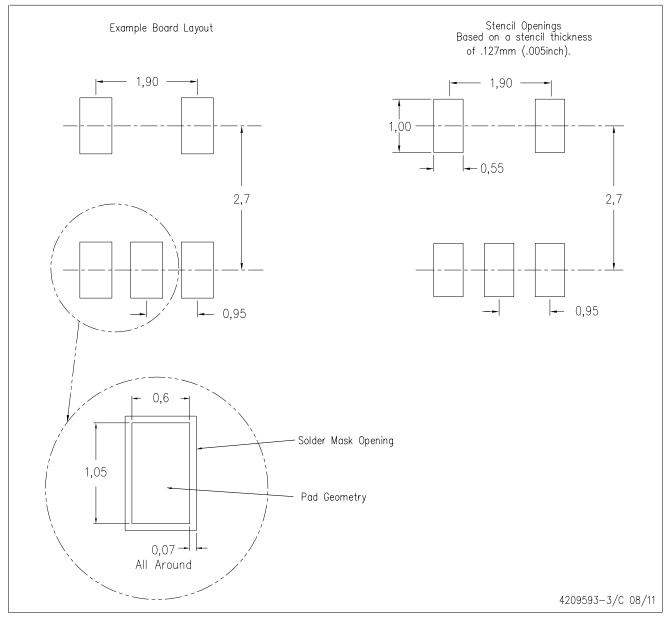
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMV932QDRQ1	SOIC	D	8	2500	340.5	338.1	20.6
LMV934QDRQ1	SOIC	D	14	2500	367.0	367.0	38.0
LMV934QPWRQ1	TSSOP	PW	14	2000	367.0	367.0	35.0

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

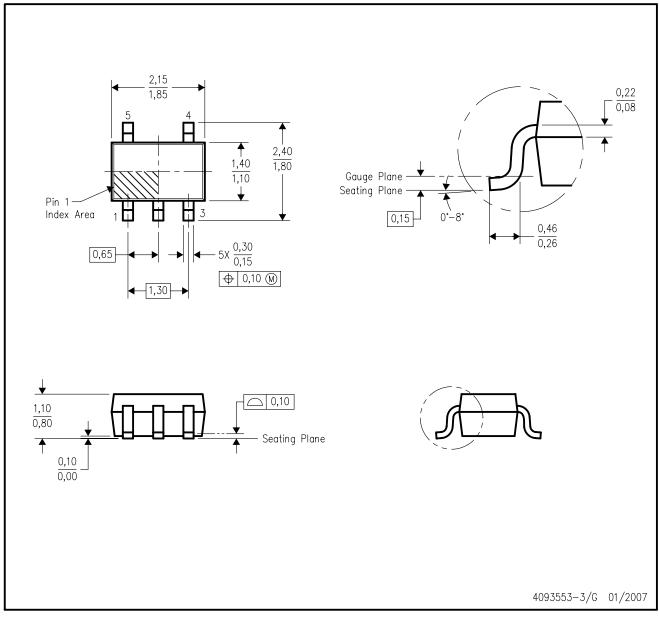

C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

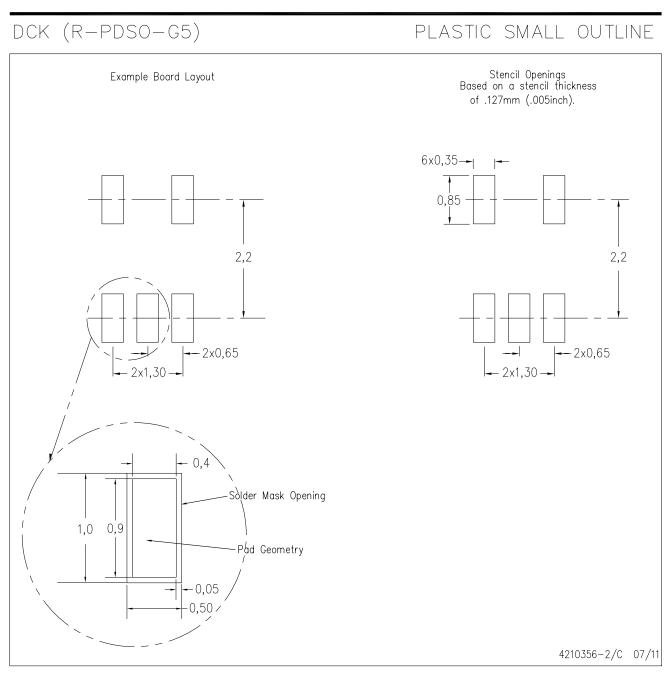
PLASTIC SMALL OUTLINE

NOTES:


A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

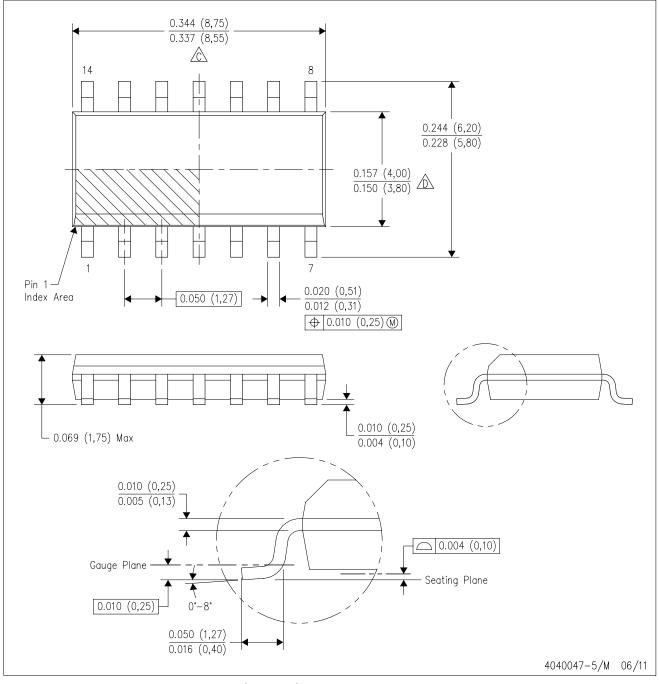
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G5)


PLASTIC SMALL-OUTLINE PACKAGE

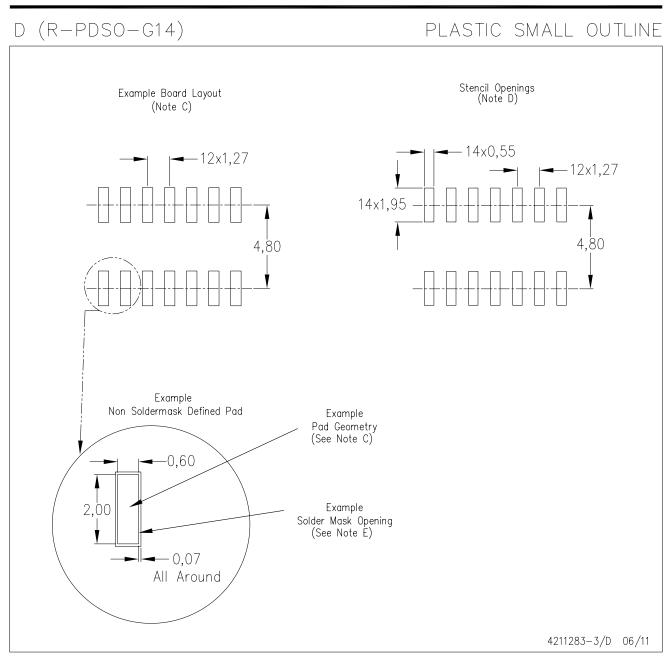
- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

LAND PATTERN DATA


NOTES:

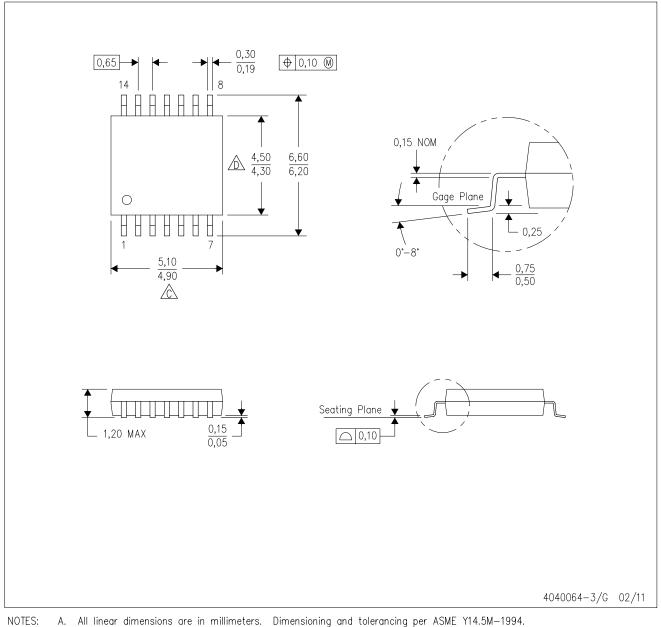
- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

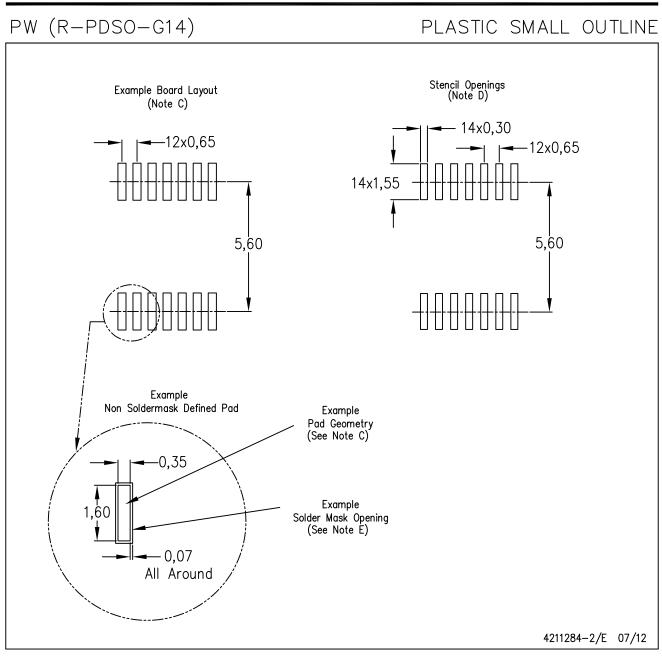
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

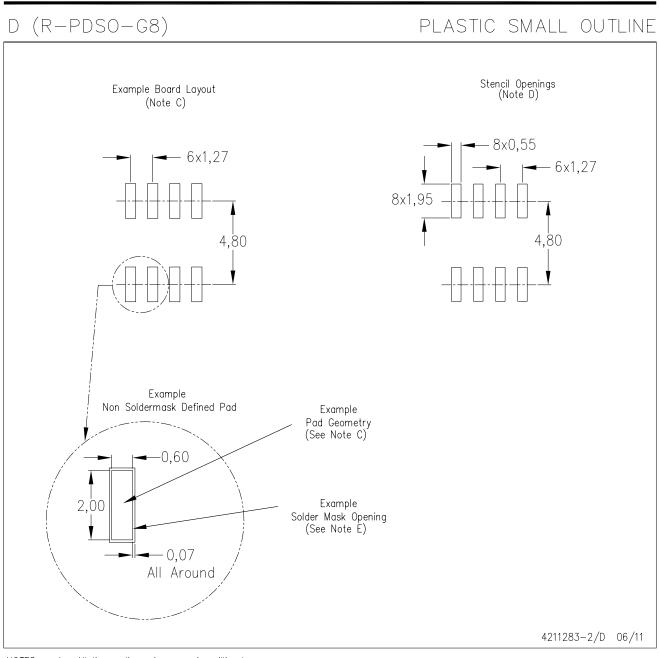
E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated