

ECHOTEL® NON-CONTACT ULTRASOUND

Worldwide Level and Flow Solutions *

Non-Contact Ultrasonic Level Measurement

on-contact ultrasonic level technology is a proven method for accurate liquid level measurement. Process control instruments utilizing this technology sense and measure liquid level, volume, or open channel flow without making physical contact with the liquid itself. This offers distinct advantages over many contact technologies in applications where corrosive media, suspended solids, changing media characteristics, or coating media are present.

taken by mechanical means or advanced signal processing, non-contact measurement can be greatly compromised.

The most obvious form of interference are the physical structures inside of a vessel-pipes, ladders, struts,

agitator blades, or irregular tank geometry. All of these can fall within the path of the ultrasonic beam to compromise the signal.

The greater the distance from the transducer, the

Measuring with Ultrasound Two components make

up a typical non-contact ultrasonic measurement device: the transmitter, or electronics; and the transducer, or sensor. A piezoelectric crystal within the transducer converts electrical signals generated by the transmitter into a series of ultrasonic pulses. Under ideal conditions, these pulses are transmitted through free air at the speed of sound until they come into contact with the liquid surface where they are reflected back to the transducer. The transmitter's electronics then measures the pulse's roundtrip time and digitally processes the information to indicate liquid level. A transmitter programmed with a vessel's geometry can calculate the liquid volume of a vessel. A transmitter programmed to convert the

The Transmitter houses the electronics for signal processing and control outputs. Depending on the model. transmitters can be mounted either integrally or remotely.

The Transducer is located inside the vessel. It transmits and receives the ultrasonic signals.

wider the beam spreads, thereby increasing the likelihood that a "false target" will enter the beam's path. At 2 feet from the transducer, a typical ultrasonic beam may be less than 6 inches in diameter; but at 35 feet from the transducer the conical shaped beam will expand to a diameter of 7 feet.

Magnetrol's 335, 355, 344 and 345 transmitters have a False Target Rejection feature which filters out obstructions that may lie within the path of the beam. By entering the locations of the obstructions into the transmitter's false target memory, the user can program out the erroneous targets.

As an additional measure to assure instrument integrity, Magnetrol transmitters feature a self-

level reading into units of volume per time can measure the liquid flow rate in an open channel.

Assuring Signal Integrity

In the real world of process management, an ultrasonic signal launched into free air is vulnerable to distortion from many sources. Unless safeguards are

diagnostics capability which continuously checks all relays, outputs and the overall function of the transducer and electronics.

Ambient temperature can also have a significant effect on the accuracy of a non-contact ultrasonic transmitter. As temperature decreases, air becomes

more dense, resulting in slower sound velocity. Since measurement is directly dependent on sound speed, it is necessary to compensate for temperature changes. All Magnetrol's transducers include a temperature compensation circuit which continuously monitors the temperature at the sensor and compensates for variations over the full temperature range of the transducer.

Ultrasonic non-contact devices are typically rated for a maximum range in ideal conditions. But process conditions can impact the maximum range of measurement. These conditions include surface agitation, vapors and steam, foam and air movement. A derating multiplier can be computed to yield a new maximum range for optimum performance. A lower frequency transducer, such as the 38 kHz model, provides increased power with a longer wavelength to increase measurement range and improve performance where steam, vapors or turbulence may be present.

Technology Advantages and Limitations

The advantages of non-contact sensing are:

- No contact with corrosive, contaminating liquids.
- Accurate to within 0.25% of measured span.
- Continuous and multiple-point sensing available.
- No moving parts for reduced maintenance.
- Not affected by changes in liquid properties such as specific gravity, dielectric shifts, pH, etc.
- Intrinsically safe, non-incendive and explosion proof instruments are available.

Conditions limiting ultrasound's effectiveness include:

- Surface foam that absorbs the ultrasonic signal.
- Vapors that significantly alter the speed of sound.
- Operating pressures exceeding 50 psig (3.45 bar).
- Temperatures exceeding +200° F (+93° C). ■

ECH©TEL Real World Applications

Echotel non-contact ultrasonic transmitters have been engineered to meet the process requirements of major industries including: Oil & Gas, Chemicals, Food & Beverage, Power Generation, Pulp and Paper, Water & Wastewater, Pharmaceutical, and Petrochemical.

Clarifier Level

Fuel Oil Storage

Condensate Storage

Influent/Effluent Flow

Open Atmosphere Sumps

BOO/301 For Liquid Level, Volume or Open Channel Flow

For Liquid Level, **Channel Flow**

Available as an integral or remote mounted unit, this versatile and powerful ultrasonic transmitter is easy to install and quick to calibrate.

Advanced Electronics

Isolated 4-20 mA output with an active/passive mode for loop power or device power. RS-485 with Modbus protocol allows bi-directional communication with DCS or PLC. Two or four 10 amp SPDT gold flash relays for a wide variety of alarm and control schemes.

Explosion-Proof Transmitter and Transducer

The Model 300/301 has Explosion-Proof FM and CSA agency approvals for both the transducer and the transmitter: Class I, Division 1, Groups B, C, and D.

Fast, Password-Protected Calibration

Unique QuickCal[™] calibration feature allows complete system calibration in 90 seconds. A password protection feature also prevents unwanted tampering with the configuration data.

Model 300/301 Transmitter Specifications

Power Supply		120 VAC ±10%, 50-60 Hz
		240 VAC ±10%, 50-60 Hz
		24 VDC ±20%
Power Consumption		12 watts maximum
Analog Output Signal		
	Active Mode	4-20 mA (isolated); maximum of
		1,000 Ω loop resistance
	Passive Mode	4–20 mA (isolated); loop resist-
		ance dependent on power supply
		(32 volt max) 1,000 Ω @ 24 volts
Digital Output		RS-485 with Modbus
Relays		10 amp SPDT resistive (0, 2 or 4)
Fail-safe		User selectable for analog and
		relay outputs
Ambient 7	Temperature	
	Electronics	-40° to +160° F (-40° to +71° C)
Display		Two-line, 32 character LCD
Keypad		16-button (inside housing)
Response Time		2 seconds, typical
Accuracy		±0.25% of calibrated span

Transducer Specifications		
Frequency	38 kHz	
Beam Angle	Conical 12°	
Max Range/Span	30 feet (9.1 m) / 28.5 feet (8.7 m)	
Dead Zone	18 inches (460 mm) minimum	
Process Temp	-40° to +163° F (-40° to +73° C)	
Process Pressure	Atmospheric to 50 psig (3.45 bar)	
Cable Length	500 feet maximum	

- Pulp & Paper
- Power Generation

For Liquid Level, Volume or Open Channel Flow

With flexible software, advanced signal processing and a powerful transducer, the Model 335 offers outstanding measurement performance and value.

Hinged, Dual Compartments

The LCD module compartment houses the user interface and the lower compartment houses the wiring terminals. A screw release allows the LCD compartment to swing completely clear of the wiring module.

Plug-In Display Module

The module offers easy set-up and configuration of all process parameters via four push buttons. The custom graphics LCD displays six-characters and a bar graph of signal strength or tank level. The module can

be removed to configure other 335 units.

335 Electronics

Advanced digital signal processing provides optimum performance in a variety of process conditions.

Echotol 335 Transmitter Specifications

Specifications
85 to 255 VAC
4–20 mA (isolated); 600 Ω load
Configurable 3 amp SPDT relay,
LED, and 3.6 or 22 mA
One, 3-amp SPDT
Software selectable
-22° to +140° F (-30° to +60° C)
Removable six-digit LCD module
with dual function bar graph
4-button menu-driven data entry
Echo strength, power, relay LED's
Auto temperature compensation
over transducer operating range
±0.2% of measured distance,
plus 0.05% of the range
Dual compartment cast aluminum
NEMA 6 (IP 67)

Iransducer Specifications		
Frequency	50 kHz	
Beam Angle	Conical 7°	
Max Range	26 feet (8 m)	
Dead Zone	14 inches (350 mm)	
Process Temp	-22° to +195° F (-30° to +90° C)	
Process Pressure	Atmospheric to 44 psig (3 bar)	
Material	Polypropylene	
Protection	NEMA 6P (IP68)	

Applications

- Open Channel Flow
- Water & Wastewater Treatment
- Chemical Storage Tanks
- Food & Beverage Containers
- Pulp & Paper Vessels

Enlarged view of LCD module in working unit

LCD module removed

6723.5 GBLL005

344/345

For Liquid Level, Volume or Open Channel Flow

A remote mounted, full-featured ultrasonic transmitter with extensive agency approvals. Many transducer configurations and transmitter options are available for greater versatility.

Convenient Front Panel Interface

Front panel keypad makes programming convenient; once wired, there's no need to open the enclosure. A large, 16-character alphanumeric display shows all parameters and a password code prevents unauthorized tampering with configuration data.

Choice of Transducers

The Model 344 employs the powerful 38 kHz Kynar transducer used primarily for level and volume applications. The Model 345 uses the 50 kHz transducer, available either in Kynar or 316 stainless steel. Transducers feature temperature compensation.

Full-Featured Electronics

Automatic, continuous self-test checks transducer signal, temperature sensor, all outputs and system functionality for proper operation. False target buffering feature eliminates signal interference for up to nine fixed tank obstructions.

Model 344/345 Transmitter Specifications

Power Supply	120 VAC ±10%, 50-60 Hz
	240 VAC ±10%, 50-60 Hz
	24 VDC ±20%
Power Consumption	12 watts (without heater)
Output Signal	4–20 mA isolated (1,000 Ω load),
	RS-232 (data logger downloading)
Relays	Four, 10-amp resistive, SPDT
Fail-safe	User selectable for analog and
	relay outputs
Display	16-character alphanumeric
Keypad	16-button integral to front panel
Response Time	2 seconds, typical
Accuracy	$\pm 0.25\%$ of configured span
Ambient Temperature	
with Heater & Thermostat	-40° to +160° F (-40° to +70° C)
w/o Heater & Thermostat	-4° to +160° F (-20° to +70° C)
Agency Approvals	Class I, Division 2, Non-incendive
	and NEMA 4X from FM and CSA

Transducer Specifications				
Frequency	38 kHz	50 kHz		
Max Range	35 feet (10.7 m)	25 feet (7.6 m)		
Max Span	33.5 feet (10.2 m)	24 feet (7.3 m)		
Process Temp	-40° to +163° F	-40° to +200° F		
	(-40° to +73° C)	(-40° to +93° C)		
Process Pressure	Atmospheric to 5	i0 psig (3.45 bar)		
Beam Angle Conical 12°		al 12°		
Cable Length	500 feet maximum			

Applications

- Sump & Wastewater
- Slurries, Viscous Fluids
- Pulp & Paper
- Power Generation
- Petrochem

For Liquid Level, Volume or Open Channel Flow

Outstanding measurement performance and value in a two-wire, integral transmitter featuring flexible software and advanced signal processing.

► Temperature Compensated Echo Rejection

The Model 355 has a patent-pending echo rejection technique that constantly adjusts the rejected echo profile based on the current sound propagation velocity. This technique keeps the transmitter tracking the actual liquid level as opposed to false targets even when temperature changes alter the shape of the echo rejection profile.

Dual Flow Totalizers

Two 7-digit flow totalizers are provided for recording flow. One totalizer is resettable and the other is non-resettable. Several multipliers are selectable to allow for proper scaling. Totalizer time is also recorded to show how long each totalizer has been recording flow.

Stored Tank Shapes for Volume

Volume configuration with the 355 is as easy as selecting the tank shape and inputting 1–3 dimensions. While a 20-point custom table is also available, selecting the actual tank shape provides for a fast and accurate configuration for a variety of common tank shapes.

Model 355 Transmitter Specifications

Power Supply	16 to 36 VDC	
Power Consumption	Less than 1 Watt	
Output Signal	4-20 mA with optional HART®	
Fault Detection	Selectable from 3.6, 22 mA, or hold	
Damping	Adjustable from 1-60	
Ambient Temperature	-40° to +175° F (-40° to 80° C)	
Display	2-line × 16-character LCD	
Keypad	4-push-button menu-driven	
Compensation	Auto temperature compensation	
	over transducer operating range	
Accuracy	Greater of $\pm 0.2\%$ of range or	
	0.24 inch (6 mm)	
Repeatability	±0.125 inch (3 mm)	
Resolution	0.1 inch (2.5 mm)	
Linearity	±0.4 inch (10 mm)	
Response Time	Less than 1 second (typical)	
Warm-up Time	30 seconds	
Enclosure	Cast aluminum or Lexan®	
Protection	NEMA 6 (IP 67)	

Transducer Specifications		
Frequency	60 kHz	
Beam Angle	Conical 10°	
Max Range	20 feet (6 meters)	
Blocking Distance	10 inches (250 mm)	
Process Temp	-40° to +175° F (-40° to +80° C)	
Process Pressure	0 to 43.5 psig (0 to 3 bar)	
Material	Kynar [®] Flex (PVDF) or polypropyle	

Applications

Protection

NEMA 6P (IP 68)

- Highly Viscous Media
- Paint, Ink & Solvents
- Food & Beverage Vessels
- Batch & Day Tanks

٦e

Worldwide Level and Flow Solutions *

CORPORATE HEADQUARTERS 5300 Belmont Road • Downers Grove, Illinois 60515-4499 USA Phone: 630-969-4000 • Fax: 630-969-9489 www.magnetrol.com • info@magnetrol.com

> EUROPEAN HEADQUARTERS Heikensstraat 6 • 9240 Zele, Belgium Phone: 052 45.11.11 • Fax: 052 45.09.93

BRAZIL: Av. Dr. Mauro Lindemberg Monteiro • 185-Jd. Santa Fé, Osasco • São Paulo CEP 06278-010 CANADA: 145 Jardin Drive, Units 1 & 2 • Concord, Ontario L4K 1X7 CHINA: Plant 6, No. 191, Huajin Road • Minhang District • Shanghai 201109 DEUTSCHLAND: Alte Ziegelei 2–4 • D-51491 Overath DUBAI: DAFZA Office 5AE 722, P.O. Box 293671 • Dubai, United Arab Emirates INDIA: C-20 Community Centre • Janakpuri, New Delhi 110 058 ITALIA: Via Arese, 12 • 20159 Milano SINGAPORE: 33 Ubi Avenue 3 • #05-10 Vertex • Singapore 408868 UNITED KINGDOM: Regent Business Centre • Jubilee Road • Burgess Hill, West Sussex RH15 9TL

> Copyright © 2010 Magnetrol International. All rights reserved. Printed in the USA. Echotel® Magnetrol® and the Magnetrol logotype are trademarks of Magnetrol International. Kynar® is a trademark of The Pennwalt Corporation.

> > Bulletin: 51-180.3 • Effective: July 2009