

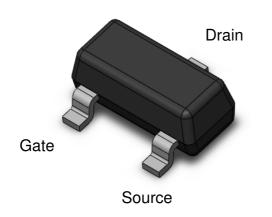
CTL0203PS-R3

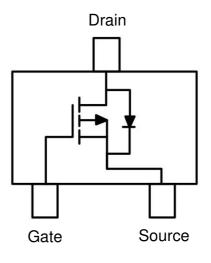
P-Channel Enhancement MOSFET

Features

- Drain-Source Breakdown Voltage V_{DSS} 30 V
- Drain-Source On-Resistance $R_{DS(ON)}$ 160m Ω , at V_{GS}= -4.5V, I_D= -1.6A $R_{DS(ON)}$ 110m Ω , at V_{GS}= -10V, I_D= -2.0A
- Continuous Drain Current at T_A=25°C I_D = -2.0A
- Advanced high cell density Trench Technology
- RoHS Compliance & Halogen Free

Applications


- Power Management
- Portable Equipment
- Battery Powered System
- Load Switch


Package Outline

Description

The CTL0203PS-R3 is the P-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management.

Schematic

CTL0203PS-R3

P-Channel Enhancement MOSFET

Absolute Maximum Rating at 25°C

Symbol	Parameters	Test Conditions	Min	Notes
Vds	Drain-Source Voltage	-30	V	
Vgs	Gate-Source Voltage	±20	V	
lo	Continuous Drain Current	-2.0	А	1
Ідм	Pulsed Drain Current	-8	А	1
PD	Total Power Dissipation	0.78	W	2
Тѕтс	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
Dente	Thermal Resistance			110	160		1 4
Reja4	Junction-Ambient (t=10s)			110	160	°C /W	1,4

Electrical Characteristics *T_A* = 25 °C (unless otherwise specified)

Static Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
Bvdss	Drain-Source Breakdown Voltage	Vgs= 0V, Id= -250µA	-30	-	-	V	
ldss	Drain-Source Leakage Current	$V_{DS} = -30V, V_{GS} = 0V$	-	-	-1	μA	
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±100	nA	

On Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
Proven	Drain-Source On-Resistance	$V_{GS} = -4.5V, I_{D} = -1.6A$	-	160	200	mΩ	2
Rds(on)	Drain-Source On-Resistance	$V_{GS} = -10V, I_{D} = -2.0A$	-	110	130	mΩ	3
$V_{GS(th)}$	Gate-Source Threshold Voltage	Vgs = Vds, I Id =-250µA	-1		-3	V	3

Dynamic Characteristics

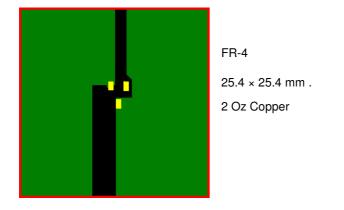
Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
Ciss	Input Capacitance	V _{GS} =0V,	-	205	-		
Coss	Output Capacitance	VDS =-15V	-	42	-	pF	
Crss	Reverse Transfer Capacitance	f=1MHz	-	13	-		

Switching Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
TD(ON)	Turn-On Delay Time	$V_{DS} = -15V$,	-	18	-		
TR	Rise Time	V _{GS} = -4.5V,	-	16	-		
TD(OFF)	Turn-Off Delay Time	$R_{G} = 6\Omega$,	-	32	-	ns	
TF	Fall Time	$R_{L}=15\Omega,$	-	8	-		
QG	Total Gate Charge	$V_{DS} = -15V$,	-	3.7	-		
Qgs	Gate-Source Charge	V _{GS} = -4.5V,	-	2	-	nC	
Qgd	Gate-Drain Charge	I _D = -2A	-	1	-		

CTL0203PS-R3

P-Channel Enhancement MOSFET

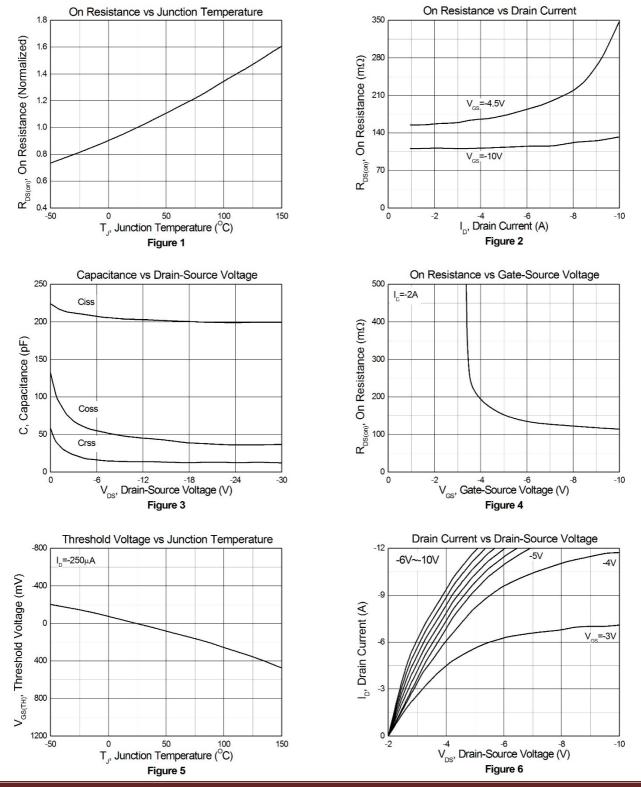

Drain-Source Diode Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
Vsd	Body Diode Forward Voltage	$V_{GS} = 0V, I_{D} = -1A$	-	-0.85	-1.2	V	
Isd	Body Diode Continuous Current		-	-	-1	А	1

Note:

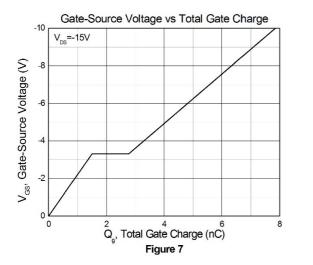
1. The power dissipation is limited by 150°C junction temperature.

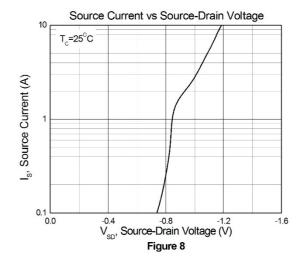
2. Device mounted on a glass-epoxy board


Test Board

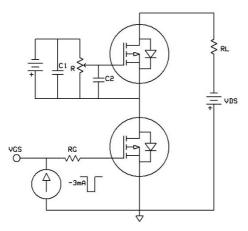
3. The data tested by pulsed , pulse width \leq 300µs , duty cycle \leq 2%

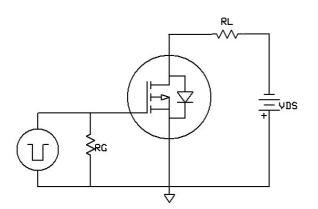
4. Thermal Resistance follow JESD51-3.



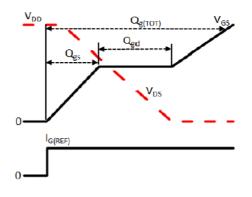

Typical Characteristic Curves

CTL0203PS-R3 P-Channel Enhancement MOSFET





Test Circuits & Waveforms


Figure 9: Gate Charge Test Circuit

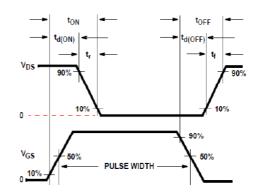

Figure 11: Switching Time Test Circuit

Figure 10: Gate Charge Waveform

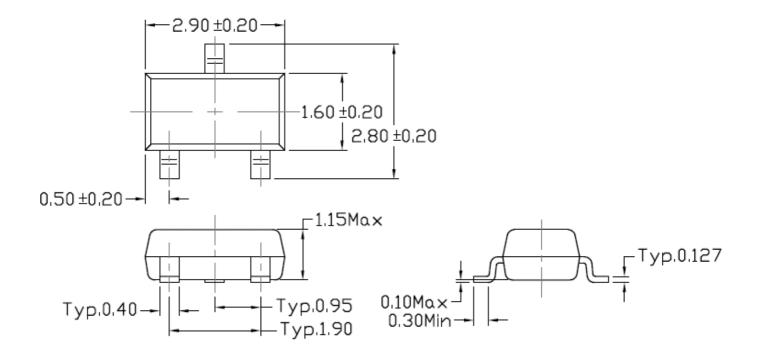
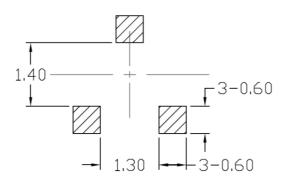
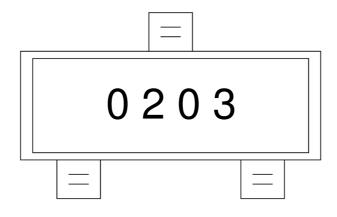


Figure 12: Switching Time Waveform

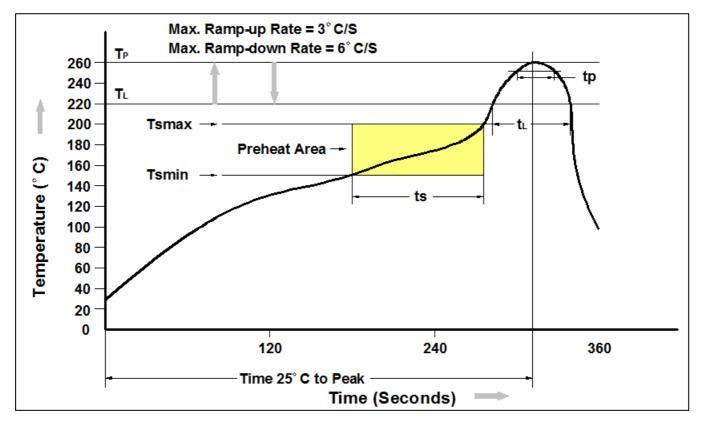


Package Dimension (SC-59)



Recommended pad layout for surface mount leadform

Marking Information


0203: Device Number

Ordering Information

Part Number	Description	Quantity
CTL0203PS-R3	SOT-23 Reel	3000 pcs

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200 <i>°</i> C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t_L to t_P)	3℃/second max.
Liquidous Temperature (TL)	217℃
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260 ℃ +0 ℃ / -5 ℃
Time (t _P) within 5 ℃ of 260 ℃	30 seconds
Ramp-down Rate $(T_P \text{ to } T_L)$	6°C/second max
Time 25℃ to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.