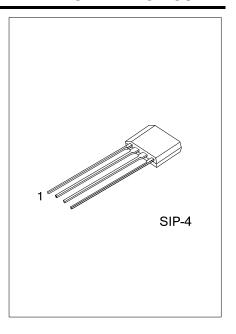
UNISONIC TECHNOLOGIES CO., LTD

UH210

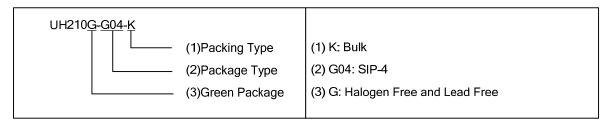
Preliminary

LINEAR INTEGRATED CIRCUIT

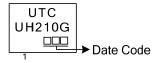

2-PHASE DC MOTOR DRIVE IC

DESCRIPTION

The UTC **UH210** is a Latch-Type Hall Effect sensor with built-in complementary output drivers. It's designed with internal temperature compensation circuit, the hysteresis Characteristic is excellent. It has built-in diode prevent reverse power fault and the application is aimed for brush-less DC Fan.

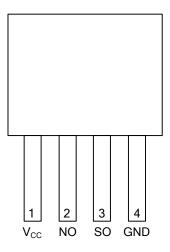

■ FEATURES

- * On-chip Hall Sensor
- * Wide Operating Power Range: 2.8V~20V
- * Excellent Hysteresis Characteristic
- * Built-in output driver up to 0.45A



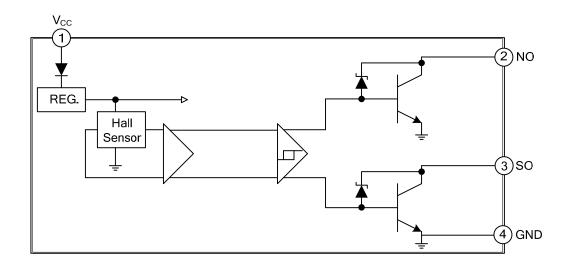
■ ORDERING INFORMATION

Ordering Number	Package	Packing
UH210G-G04-K	SIP-4	Bulk



MARKING

<u>www.unisonic.com.tw</u> 1 of 5


PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	Vcc	Power Supply
2	NO	Output pin. Low at N magnetic field
3	SO	Output pin. Low at S magnetic field
4	GND	Ground

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARA	METER	SYMBOL	RATINGS	UNIT
Zener Breakdown Volta	ge	V_Z	35	V
NO/SO Pin Voltage			30	V
VCC Pin Voltage			20	V
Dools Cipls Commons	Hold Current	lo	700	mA
Peak Sink Current	Continuous Current	lo	450	mA
Dawer Dissipation	T _A =25°C	P_D	850	mW
Power Dissipation	T _A =85°C	P_D	450	mW
Thermal Resistance		θ_{JA}	0.15	°C/W
Operational Temperatur	re Range	T_{OPR}	-20~+100	°C
Storage Temperature Range		T_{STG}	-65~+150	°C
Junction Temperature		TJ	+150	°C
Lead Temperature (Solo	dering, 10 sec)	T_L	+230	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Minimum Operating Voltage	Vcc	No use pin is open (Fig. 1)		2.8		٧
Maximum Operating Voltage	Vcc	I _{CC} <20mA No use pin is open (Fig. 1)		20.0		٧
Quiescent Supply Current	Icc	No use pin is open V _{CC} : 3.0V~20V (Fig. 1)		18	20	mA
NO/SO Saturation Voltage	V_{SAT}	I _O =450mA (Fig. 1)			1.0	V

Note: Fig 1 The IC output state is under N magnetic field.

■ NO/SO SATURATION VOLTAGE VS. OUTPUT CURRENT(I_o) (V_{CC}=12V, T_A=25°C)

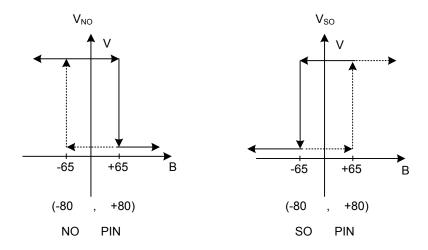
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Saturation Voltage V _{O(SAT)}		I _{OUT} =200mA		0.30		٧
	I _{OUT} =300mA		0.47		٧	
	.,	I _{OUT} =400mA		0.66		٧
	V _{O(SAT)}	I _{OUT} =500mA		0.88		٧
		I _{OUT} =600mA		1.09		٧
		I _{OUT} =700mA		1.31		V

■ AC ELECTRICAL CHARACTERISTICS

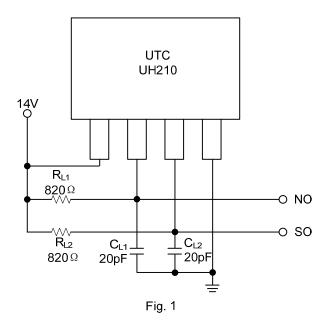
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Rise Time	t _R	$R_L=100\Omega(5w)$, $C_L=20pF$ (Fig 1)		10		uS
Fall Time	t _F	R_L =100 Ω (5w), C_L =20pF (Fig 1)		300		nS

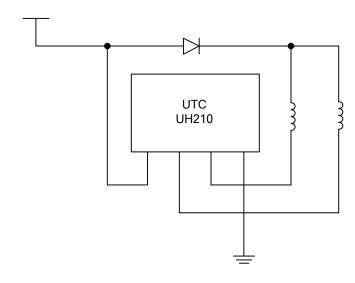
■ MAGNETIC CHARACTERISTICS (T_A= -20 ~100°C)

A grade


PARAMETR	SYMBOL	MIN	TYP	MAX	UNIT
Operate Point	B _{OP}	+10		+65	G
Release Point	B_RP	-65		-10	G
Hysteresis	B _{HYS}	20		130	G

B grade


PARAMETR	SYMBOL	MIN	TYP	MAX	UNIT
Operate Point	B _{OP}	+5		+80	G
Release Point	B_RP	-80		-5	G
Hysteresis	B _{HYS}	10		160	G


■ CHYSTERESIS CHARACTERISTICS

■ TEST CIRCUIT

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.