TLE2426-EP RAIL SPLITTER PRECISION VIRTUAL GROUND SGLS345 – JUNE 2006

- Controlled Baseline
 One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree[†]
- One-Half V_I Virtual Ground for Analog Systems
- Micropower Operation . . . 170 μ A Typ, V_I = 5 V
- Wide V_I Range . . . 4 V to 40 V
- High Output-Current Capability - Source . . . 20 mA Typ
 - Sink . . . 20 mA Typ

description/ordering information

In signal-conditioning applications utilizing a single power source, a reference voltage equal to one-half the supply voltage is required for termination of all analog signal grounds. TI presents a precision virtual ground whose output voltage is always equal to one-half the input voltage—the TLE2426 rail splitter.

The unique combination of a high-performance, micropower operational amplifier and a precisiontrimmed divider on a single silicon chip results in a precise V_0/V_1 ratio of 0.5 while sinking and sourcing current. The TLE2426 provides a lowimpedance output with 20 mA of sink and source capability, while drawing less than 280 µA of supply current over the full input range of 4 V to 40 V. A designer need not pay the price in terms of board space for a conventional signal ground consisting of resistors, capacitors, operational amplifiers, and voltage references. For increased performance, the 8-pin package provides a noise-reduction pin. With the addition of an external capacitor (C_{NR}), peak-to-peak noise is reduced, while line ripple rejection is improved.

- Excellent Output Regulation

 -102 μV Typ at I_O = 0 mA to -10 mA
 -49 μV Typ at I_O = 0 mA to 10 mA
- Low-Impedance Output . . . 0.0075 Ω Typ
- Noise Reduction Pin
- [†] Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

INPUT/OUTPUT TRANSFER CHARACTERISTICS

Initial output tolerance for a single 5-V or 12-V system is better than 1% over the full 40-V input range. Ripple rejection exceeds 12 bits of accuracy. Whether the application is for a data-acquisition front end, analog signal termination, or simply a precision voltage reference, the TLE2426 eliminates a major source of system error.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2006 Texas Instruments Incorporated

ORDERING INFORMATION

TA	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–55°C to 125°C	SOIC (D)	Tape and reel	TLE2426MDREP	2426EP	
+ Dookogo drowings	standard nasking	quantitian thorm	al data avmhalization	and DCP dealar	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Continuous input voltage, V ₁	40 V
Continuous filter trap voltage	40 V
Output current, I _O	±80 mA
Duration of short-circuit current at (or below) 25°C (see Note 1)	Unlimited
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–55°C to 125°C
Operating junction temperature, T _J (see Note 2)	150°C
Storage temperature range, T _{stg} (see Note 2)	150°C
Lead temperature 1,6 mm (1/16 in) from case for 10 s	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

2. Long-term high-temperature storage and/or usage at the absolute maximum ratings may result in a reduction of overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.

	DISSIPATION RATING TABLE									
PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING					
D	1102 mV	10.3 mW/°C	638.5 mW	484 mW	72.1 mW					

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, VI	4	40	V
Operating free-air temperature, T _A	-55	125	°C

TLE2426-EP RAIL SPLITTER PRECISION VIRTUAL GROUND SGLS345 – JUNE 2006

PARAMETER	TEST CONDITIO	T _A †	MIN	TYP	MAX	UNIT	
	V ₁ = 4 V			1.98	2	2.02	
	V _I = 5 V	25°C	2.48	2.5	2.52		
Output voltage	V _I = 40 V			19.8	20	20.2	V
	V _I = 5 V		Full range	2.465		2.535	
Temperature coefficient of output voltage					25		ppm/°C
		V _I = 5 V	25°C		170	300	
Supply current	No load		25°C			350	μA
	$V_{I} = 4 \text{ to } 40 \text{ V}$		Full range			400	
	L 0.12 40 mA	-	25°C		-0.102	±0.7	
Output voltage regulation	$I_{O} = 0$ to -10 mA	Full range			±10	mV	
(sourcing current)+	$I_{O} = 0 \text{ to } -20 \text{ mA}$	25°C		-0.121	±1.4		
	I _O = 0 to 10 mA	25°C		0.049	±0.5		
Output voltage regulation	$I_{O} = 0$ to 8 mA	Full range			±10	mV	
(Sinking current)+	I _O = 0 to 20 mA	25°C		0.175	±1.4]	
Output impedance [‡]			25°C		7.5	22.5	mΩ
Noise-reduction impedance			25°C		110		kΩ
	Sinking current, VO = 5 V		26				
Short-circuit current	Sourcing current, V _O = 0	25°C	-47		mA		
		C _{NR} = 0	0500		120		
Output noise voitage, rms	f = 10 Hz to 10 kHz	C _{NR} = 1 μF	25°C	30		μν	
		$C_{L} = 0$	0500		290		
	V_{O} to 0.1%, $I_{O} = \pm 10$ mA	C _L = 100 pF	25°C	275			
Output voltage current step response		$C_{L} = 0$	0500	400		μs	
	V_{O} to 0.01%, $I_{O} = \pm 10$ mA	C _L = 100 pF	25°C	390			
Stop roopooo	V _I = 0 to 5 V, V _O to 0.1%		2500		20		
Sich lesholise	$V_{I} = 0$ to 5 V, V_{O} to 0.01%	20 0	120			μs	

electrical characteristics at specified free-air temperature, $V_1 = 5 V$, $I_0 = 0$ (unless otherwise noted)

[†] Full range is –55°C to 125°C. [‡] The listed values are not production tested.

TLE2426-EP RAIL SPLITTER PRECISION VIRTUAL GROUND SGLS345 - JUNE 2006

electrical characteristics at s	specified free-air tempe	erature. Vi = 12 V. Io = ((unless otherwise noted)
olooti loui ollaraotoriloti oo at t		[1 - 12]	

PARAMETER	TEST CONDITIO	T _A †	MIN	TYP	MAX	UNIT			
	V _I = 4 V			1.98	2	2.02			
	VI = 12 V	25°C	5.95	6	6.05				
Output voltage	V _I = 40 V			19.8	20	20.2	V		
	V _I = 12 V		Full range	5.925		6.075			
Temperature coefficient of output voltage			Full range		35		ppm/°C		
		V _I = 12 V	25°C		195	300			
Supply current	No load		25°C			350	μA		
		$V_{I} = 4 \text{ to } 40 \text{ V}$	Full range			400			
		-	25°C		-1.48	±10			
Output voltage regulation	$I_{O} = 0$ to -10 mA	Full range			±10	mV			
(sourcing current)+	$I_{O} = 0 \text{ to} - 20 \text{ mA}$	25°C		-3.9	±10				
	I _O = 0 to 10 mA	25°C		2.27	±10				
Output voltage regulation	$I_{O} = 0$ to 8 mA	Full range			±10	mV			
	$I_{O} = 0$ to 20 mA	25°C		4.3	±10				
Output impedance [‡]		25°C		7.5	22.5	mΩ			
Noise-reduction impedance			25°C		110		kΩ		
	Sinking current, $V_0 = 12 V$		0500	31					
Short-circuit current	Sourcing current, $V_0 = 0$	25°C	-70			mΑ			
		$C_{NR} = 0$	0500	120					
Output holse voltage, rms	T = 10 HZ to 10 KHZ	$C_{NR} = 1 \mu F$	25°C		30		μν		
		CL = 0	0500		290				
	V_{O} to 0.1%, $I_{O} = \pm 10$ mA	C _L = 100 pF	25°C	275					
Output voltage current step response		CL = 0	0500	400		μs			
	V_{O} to 0.01%, $I_{O} = \pm 10$ mA	C _L = 100 pF	25°C	390					
Ston rooponoo	$V_{I} = 0$ to 12 V, V_{O} to 0.1%	Ci = 100 pF	2500		12				
	$V_{I} = 0$ to 12 V, V _O to 0.01%		25-0	120			μs		

[†] Full range is –55°C to 125°C.

[‡]The listed values are not production tested.

TYPICAL CHARACTERISTICS

Table of Graphs

		FIGURE
Output voltage	Distribution	1, 2
Output voltage change	vs Free-air temperature	3
Output voltage error	vs Input voltage	4
	vs Input voltage	5
Input bias current	vs Free-air temperature	6
Output voltage regulation	vs Output current	7
Output impedance	vs Frequency	8
	vs Input voltage	9, 10
Snort-circuit output current	vs Free-air temperature	11, 12
Ripple rejection	vs Frequency	13
Spectral noise voltage density	vs Frequency	14
Output voltage response to output current step	vs Time	15
Output voltage power-up response	vs Time	16
Output current	vs Load capacitance	17

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

MACROMODEL INFORMATION

TLE2426 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT * CREATED USING PARTS RELEASE 4.03 ON 08/21/90 AT 13:51 REV (N/A) SUPPLY VOLTAGE: 5 V * * * CONNECTIONS: FILTER INPUT * COMMON * OUTPUT * .SUBCKT TLE2426 5 i ż ż 11 12 21.66E-12 C1 C2 6 7 30.00E-12

C3	87 85	0	10.64E-9
DCM	0 D Q 1	00 00	
	83	02 81	DA DY
DCM-	5	53	
	51	55	
	90	Q1	
	20	00	
מםס	22	90 C	
DP	4 0 /	00	
ECMR	04	99	
EGND	99	0	POLY(1) = (2, 4) + (4, 0) + (0, 2) + (2, 2) + (2, 2) + (2, 4) +
EPSR	00	0	$\begin{array}{cccc} POLI(1) & (3,4) & -10.22E-6 & 3.24E-6 \\ POLV(1) & (30,0) & 120E-6 & 1 \\ \end{array}$
ENSE	89	2	$\begin{array}{ccc} POLY(1) & (88,0) & 120E-61 \\ POLY(C) & WR $
FB		99	POLY(6) VE VC VE VLPVLNVPSR 0 /4.866 - 1066 1066 - 1066 - 1066 /466
GA	6	0	11 12 320.4E-6
GCM	0	6	
GPSR	85	86	(85,86) IUUE-6
GRCI	4		(4, 11) 3.204E - 4
GRC2	4		(4, 12) 3.204E - 4
GREI	13	10	(13,10) 1.038E-3
GREZ	14	TO	
HLIM	90	1	VLIM IR DOLV(2) NOM NOM 0 1E2 1E2
TDD	00 2	1	POLI(Z) VCM+ VCM- 0 IEZ IEZ
TEE	2 2	4 1 0	
TTO	2	10	
110 T1	∠ 00	0	
01	11	20	12 OV
02	12	80	
Q2 D2	12	00 Q	
RCM	84	81	
RCH	10	99	8 31686
RN1	87	0	2 5558
RN2	87	88	11.67E3
RO1	8	5	63
RO2	7	99	62
VCM+	82	99	
VCM-	83	99	-2.3
VB	9	0	DC 0
VC	3	53	DC 1.400
VE	54	4	DC 1.400
VLIM	7	8	DC 0
VLP	91	0	DC 30
VLN	0	92	DC 30
VPSR	0	86	DC 0
RFB	5	2	1K
RIN1	3	1	220K
RIN2	1	4	220K
.MODEL DX	D(I	S=8	00.0E-18)
.MODEL QX	PNF	(IS	=800.0E-18BF=480)
.ENDS			

PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

Texas Instruments

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLE2426MDREP	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLE2426MDREP	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated