MULTI-COLOR TYPE LED

Features

- High intensity
- Wide viewing angle
- General purpose leads
- Reliable and rugged

Absolute Maximum Ratings at Ta=25℃

Absolute maximum Natings at 1a 20 C						
Parameter	Max.	Unit				
Power Dissipation	100	mW				
Peak Forward Current	100	mA				
(1/10 Duty Cycle, 0.1ms Pulse Width)	100					
Continuous Forward Current	40	mA				
Derating Linear From 50°C	0.4	mA / °C				
Reverse Voltage	5	V				
Operating Temperature Range	-40°C to +80°C					
Storage Temperature Range	-40°C to +80°C					
Lead Soldering Temperature	260°C for 5 Seconds					
[4mm(.157") From Body]						

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Protruded resin under flange is 1.0mm (.04") max.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

Package Dimensions

Unit: mm (inches)

Tolerance: ± 0.25mm (.010") max.

Part No.	Emitting Color	Lens Color	Peak Wavelength λp (nm)	Vf (V) I _f = 20mA (Note E1)	lv (mcd) (Note E2)	Viewing Angle 2θ _{1/2} (Deg) (Note E3)
				Min Typ	Min Typ	
EL-3RG332-BSF	Hi-Red	- Water Clear	644	1.6 – 2.0	60 – 85	30
	Hi-Green		568	1.7 – 2.2	30 – 55	30
EL-3RG634-BSF	Hi-Red	White Diffused	644	1.6 – 2.0	20 – 40	50
	Hi- Green		568	1.7 – 2.2	15 – 30	50
EL-3YG634-BSF	Hi-Yellow	White Diffused	588	1.6 – 2.0	20 – 30	50
	Hi- Green		568	1.7 – 2.2	15 – 35	50

Parameter Test Condition

Luminous Intensity I_f = 20mA (Note E1. Luminous intensity is measured with a light sensor and filter combination that approximates

the CIE eye-response curve.)

Dominant Wavelength $I_f = 20$ mA (Note E2: The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents

the single wavelength which defines the color of the device.)

Peak Emission Wavelength I_f = 20mA

Viewing Angle (Note E3. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.)

 $\label{eq:spectral} \begin{array}{lll} \text{Spectral Line Half-Width} & & I_f = 20\text{mA} \\ \text{Forward Voltage} & & I_f = 20\text{mA} \\ \text{Reverse Current} & & I_f = 20\text{mA} \\ \end{array}$