

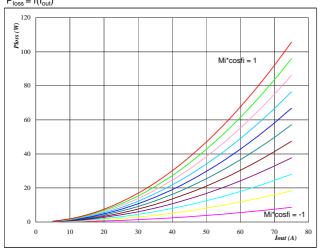
flow1

Output Inverter Application

600V/50A

3phase SPWM

V_{GEon} = 15 V

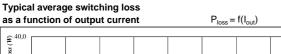

 V_{GEoff} -15 V R_{gon} 16 Ω

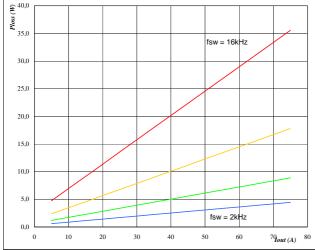
 R_{goff} 16 Ω

Figure 1

IGBT

Typical average static loss as a function of output current $P_{loss} = f(I_{out})$



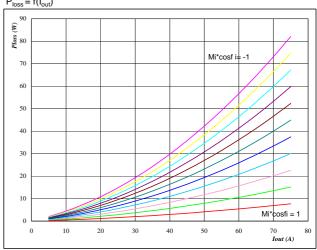

 \mathbf{At} $T_j =$

125 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

IGBT Figure 3

Αt


 $T_j =$ 125 \mathcal{C} DC link = 320 ٧

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$

Figure 4

2.0

1,0

0,0

DC link =

125 ${\mathfrak C}$

 $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

Typical average switching loss

as a function of output current

Ploss 6,0 fsw = 16kHz 5,0 4,0 3,0

 $P_{loss} = f(I_{out})$

fsw = 2kHz

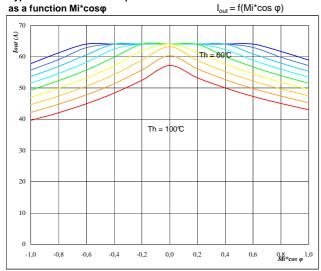
70 Iout (A)

320

٧ $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

 ${\mathfrak C}$

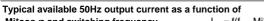
copyright Vincotech 1 Revision: 2

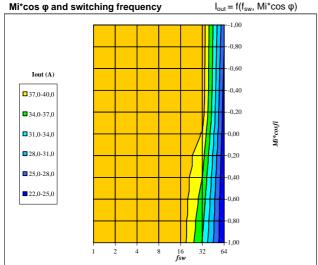

flow1

Output Inverter Application

600V/50A

fsw (kHz)

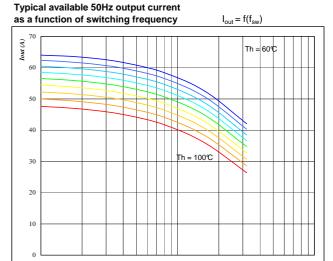




Αt

 ${\mathfrak C}$ $T_j =$ 125 DC link = V 320 kHz $f_{sw} =$

60 °C to 100 °C in steps of 5 °C T_h from

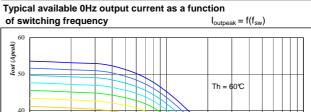

Αt

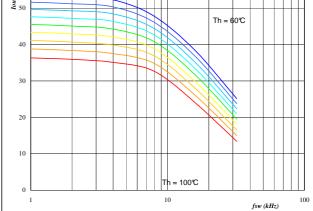
 $T_h =$

,		
$T_j =$	125	C
DC link =	320	V
T _b =	80	°

 ${\mathfrak C}$

Figure 6




At

 $T_j =$ ${\mathbb C}$ 125 DC link = 320

 $Mi^*\cos \varphi = 0.8$

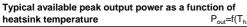
 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

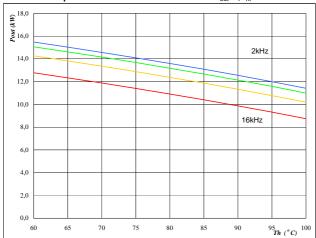
Αt $T_j =$

125 ${\mathfrak C}$

DC link = 320 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

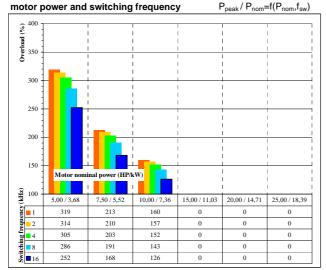



flow1

Output Inverter Application

600V/50A

Αt


 $T_j =$ 125 $^{\circ}$ DC link = 320 $^{\circ}$ V

DC link = 320 Mi = 1

 $\cos \phi$ = 0,80 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Figure 11 Inverte

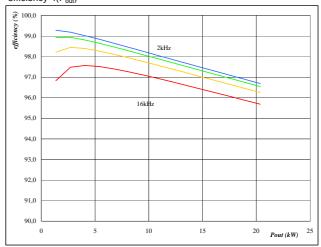
Typical available overload factor as a function of

Αt

 $T_j = 125$ \mathbb{C} DC link = 320 \mathbb{V}

Mi = 1

 $\cos \phi = 0.8$


 f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$

Motor eff = 0.85

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

At

 $T_j = 125$ °C

DC link = 320 V

Mi = 1 cos φ = 0.80

f_{sw} from 2 kHz to 16 kHz in steps of factor 2