Flat Gain, Ultra-Wideband Monolithic Amplifier

LVA-123+

50Ω 0.01 to 12 GHz

CASE STYLE: DQ849

The Big Deal

- Ultra broadband performance
- Excellent Gain Flatness
- · Broadband without external matching components

Product Overview

LVA-123+ (RoHS compliant) is an advanced ultra-wideband amplifier fabricated using GaAs HBT technology and offers excellent gain flatness over a broad frequency range. In addition, the LVA-123+ has good input and output return loss over this frequency range without the need for external matching components. Lead finish is tin-silver over nickel. It has repeatable performance from lot to lot and is enclosed in a 3x3 mm 8-lead package for very good thermal performance.

Key Features

Feature	Advantages
Ultra Broad Band: 0.01 to 12 GHz	Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX in a single amplifier.
Ultra Flat Gain ±0.6 dB typ: 0.05 - 6 GHz	Ultra Flat Gain, eliminates need for compensation networks to achieve published results
Wideband Bias-Tee, TCBT-123+	Enables customer to relaize full BW without changing any components
No External Matching Components Required	LVA-123+ provides good Input and Output Return Loss of 12-28 dB over 0.05 - 6 GHz without the need for any external matching components
Excellent ESD HBM: class 1C (1000 to <2000V) MM: class M2 (100 to <200V)	Simplifies ESD handling.

Flat Gain, Ultra-Wideband Monolithic Amplifier

0.01-12 GHz

Product Features

- Excellent Gain Flatness, ±0.6 dB, 0.05-6 GHz
- Gain, 17.3 dB typ. at 2 GHz
- Excellent input return loss, 20 dB typ., 2 GHz

Typical Applications

- Base station infrastructure
- Test instruments
- MMDS & Wireless LAN
- LTE
- Satellite communication
- Avionics

LVA-123+ CASE STYLE: DQ849

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

LVA-123+ (RoHS compliant) is an advanced ultra-wideband amplifier fabricated using GaAs HBT technology and offers excellent gain flatness over a broad frequency range. In addition, the LVA-123+ has good input and output return loss over this frequency range without the need for external matching components. Lead finish is tin-silver over nickel. It has repeatable performance from lot to lot and is enclosed in a 3x3 mm 8-lead package for very good thermal performance.

simplified schematic and pin description

Function	Pin Number	Description
RF IN	2	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
RF-OUT and DC-IN	5	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit", Fig. 2
GND	Paddle	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.
NC	1,3,4,6,7,8	No connection

LVA-123+

Electrical Specifications¹ at 25°C and Vcc=5V, R= 16.5 Ω unless noted

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency range		0.01		12.0	GHz
Gain	0.05	—	16.5	_	dB
	0.85	_	17.4	_	
	2.0	15.6	17.3	19.0	
	6.0	_	16.7	_	
	8.0	_	14.7	_	
	10.0	_	11.6	_	
	12.0		8.1	_	
Gain flatness	0.05-6		±0.6		dB
Input return loss	0.05	_	13.7	_	dB
	0.85	_	25.0	_	
	2.0	16.0	25.0	—	
	6.0	—	18.3	—	
	8.0	_	9.7	—	
	10.0	_	6.9	—	
	12.0	—	5.2	_	
Output return loss	0.05		13.5		dB
	0.85		21.3		
	2.0		16.5		
	6.0		11.6		
	8.0		7.1		
	10.0		6.2		
	12.0		5.2		
Reverse isolation	6.0		19.2		dB
Output power at 1dB compression	0.05		17.2		dBm
	0.85		16.5		
	2.0		15.6		
	6.0		13.3		
	8.0		10.8		
	10.0		7.8		
	12.0		5.3		
Output IP3	0.2		29.0		dBm
	0.85		30.3		
	2.0		28.2		
	6.0		23.6		
	8.0		22.1		
	10.0		18.5		
	12.0		15.5		
Noise figure	0.2		3.7		dB
	0.85		3.7		
	2.0		3.9		
	6.0		4.1		
	8.0		4.4		
	10.0		5.2		
	12.0		5.9		
Supply operating voltage (Vcc)		4.8	5.0	5.2	V
Device operating current			52	57	mA
Device current variation vs. temperature ²			59		μA/°C
Device current cariation vs. voltage			0.019		mA/mV
Thermal resistance, junction-to-ground lead			156		°C/W

Measured on Mini-Circuits Characterization test board TB-841+. See Characterization Test Circuit (Fig. 1)
 (Current at 85°C — Current at -45°C)/130

Absolute Maximum Ratings³

Parameter	Ratings		
Operating temperature (ground lead)	-40°C to 85°C		
Storage temperature	-65°C to 150°C		
Operating current at 5V (Vcc) & 16.5 Ω	100 mA		
Power dissipation	0.34 W		
Input power (CW)	28 dBm (5 min max.)		
DC voltage on Pad 5	6 V		

Permanent damage may occur if any of these limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

Characterization Test Circuit

Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-841+) Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer. (R=16.5Ω)

Conditions:

1. Gain and Return loss: Pin= -25dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.

Recommended Application Circuit

Fig 2. Test Board includes case, connectors, and components soldered to PCB (Cblock=0.001 μF, Cbypass=0.1 μF, R=16.5Ω)

Product Marking

Additional Detailed Technical Information

additional information is available on our dash board. To access this information click here

	Data Table		
Performance Data	Swept Graphs		
	S-Parameter (S2P Files) Data Set (.zip file)		
Case Style	DQ849 Plastic package, exposed paddle, lead finish: tin-silver over nickel		
Tape & Reel	F104		
Standard quantities available on reel	7" reels with 10, 20, 50, 100, 200, 500, 1K or 2K devices		
Suggested Layout for PCB Design	PL-473		
Evaluation Board	TB-877+		
Environmental Ratings	ENV08T1		

ESD Rating*

Human Body Model (HBM): Class 1C (1000 to <2000V) in accordance with ANSI/ESD STM 5.1 - 2001 Machine Model (MM): Class M2 (100 to <200V) in accordance with ANSI/ESD STM5.2-1999

*Measured in industry standard SOT-89 package

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp