Preliminary GaN Solid State Power Amplifier <u>RCP25400</u>-20L

Product Features

- 2400 ~ 2500MHz (ISM band)
- 400W CW Peak Power @ 50V
- 63% Drain Efficiency @ 50V
- Low Cost, Light Weight, Compact
- Using GaN-on-SiC HEMT Transistor
- Excellent Thermal Stability and Ruggedness
- Two Transistors are Combined in Parallel
- Externally 50Ω Matched
- Circulator Included

Description

Applications

- High Power IndustryMicrowave CVD Reactor
- Medical Therapy
- Plasma Generator
- Plasma Lighting
- Food Science
- MW Heating and Drying
- Automotive Ignition

CW 400W Pallet Amplifier using GaN-on-SiC transistors is designed for industrial, scientific, medical (ISM) and Plasma applications at 2450MHz. RCP25400-20L is the world's smallest 400W class high efficiency power amplifier with the compact size of $106 \times 43 \times 12$ mm. This amplifier is suitable for use in CW and pulse applications. This high efficiency rugged device is targeted to replace industrial magnetrons and other vacuum tubes which are currently applying into high power industrial applications, semiconductor equipments, plasma and medical systems.

	G					
Electrical	Specificat	ions @ 1	$I_{DO} = 50 \text{mA},$	$V_{DS} = 50V$,	$T_{\rm C} = 25^{\circ}{\rm C}$,	50Ω System

PARAMETER	UNIT	MIN	ТҮР	MAX	SYMBOL
Operating Frequency	MHz	2400	-	2500	Fo
Operating Bandwidth	MHz	-	100	-	OBW
CW Output Power	W	_	420	_	Ро
Efficiency	%	rfh	63	-	Eff
Input Power	dBm	-	42.4		PI
Power Gain @ Peak Power	dB	13.3	13.8		Gp
Gain Flatness	dB	-	1.0	1.5	ΔGp

* Custom design available

<u>RFHIC</u>

RFHIC

Typical CW Performance Charts

* **Bias condition** ($I_{DQ} = 50$ mA, $V_{DS} = 50$ V, Tc = 25°C)

Frequency[MHz]

Fig.2 Power Gain, Drain Efficiency vs. Frequency

Preliminary GaN Solid State Power Amplifier RCP25400-20L

Absolute Maximum Ratings

PARAMETER	UNIT	RATING	SYMBOL
Gate-Source Voltage	V	-10,+2	V _{GS}
Drain- Source Voltage	Drain- Source Voltage V 150		V _{DS}
Operating Voltage V		50	V _{DC}
Operating Junction Temperature	°C	225	TJ
Operating Flange Temperature	°C	0 ~ 60	Tc
Storage Temperature	°C	-50 ~ 150	Tstg

Operating Voltages

PARAMETER	UNIT	NOMINAL VOLTAGE	VOLTAGE ACCURACY	SYMBOL
Drain-Source Voltage	V	50	$\pm 2\%$	V _{DS}
Gate-Source Voltage	V	-3.2	± 2%	V _{GS}

Power Supply ($I_{DQ} = 50$ mA, $V_{DS} = 50$ V, Tc=25°C)

PARAMETER	UNIT	MIN	ТҮР	MAX	SYMBOL
Drain Current(AVG)	А	C	13.5	14.5	I _{DD}

Block diagram

Precautions

This product is a CW Amplifier based on a Gallium Nitride Transistor.

The Gallium Nitride Transistor requires a Negative Voltage Bias which operates alongside a Positive Voltage Bias. These Biases are applied in accordance to the Sequence during Turn-On and Turn-Off.

The Pallet Amplifier does not have a built-in Bias Sequence Circuit. Therefore, users need to either apply positive voltages and negative voltages in the required sequence, or add an external Bias Circuit to this Amplifier.

The required sequence for power supply is as follows.

During Turn-On

- 1. Connect GND.
- 2. Apply -4.5V to VGS.
- 3. Apply 50V to V_{DS} .
- 4. Turn on the V_{GS} , and then, turn on the V_{DS} .
- 5. Apply the RF Power.

During Turn-Off

- Sequence Timing Diagram -

Mechanical Specifications

PARAMETER U		ТҮР	
Mass	s g 270		
Dimension	mm	106 x 43 x 12	
		50 ohm Pad : RF Input	
KF Connector	-	Circulator Pin : RF Output	
DC Connector	-	Gate Pads (2EA), Drain Pads (2EA)	

Outline Drawing

Pin Description

in Name	Description	Pin Name	Description
V _{GS}	V _{GS} (2 x 1.6mm)	V _{DS}	V _{DS} (2 x 7mm)
RF IN	50 ohm Micro strip line (1 x 1.6mm)	RF OUT	Circulator Pin (1 x 1mm)

Preliminary GaN Solid State Power Amplifier RCP25400-20L

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
RCP25400-20L	May, 2018	0.1	Initial release of datasheet	Preliminary

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-8069-3036.