

GaAs INTEGRATED CIRCUIT

μ PG2214TB

L, S-BAND SPDT SWITCH

DESCRIPTION

The μ PG2214TB is a GaAs MMIC for L, S-band SPDT (Single Pole Double Throw) switch which was developed for mobile phone and another L, S-band application.

This device can operate 2 control switching by control voltage 1.8 to 5.3 V. This device can operate frequency from 0.05 to 3.0 GHz, having the low insertion loss and high isolation.

This device is housed in a 6-pin super minimold package. And this package is able to high-density surface mounting.

FEATURES

Switch control voltage

 Vcont (H) = 1.8 to 5.3 V (3.0 V TYP.)
 Vcont (L) = -0.2 to +0.2 V (0 V TYP.)

 Low insertion loss

 Lins1 = 0.25 dB TYP. @ f = 0.05 to 0.5 GHz, Vcont (H) = 3.0 V, Vcont (L) = 0 V
 Lins2 = 0.25 dB TYP. @ f = 0.5 to 1.0 GHz, Vcont (H) = 3.0 V, Vcont (L) = 0 V
 Lins3 = 0.30 dB TYP. @ f = 1.0 to 2.0 GHz, Vcont (H) = 3.0 V, Vcont (L) = 0 V
 Lins4 = 0.35 dB TYP. @ f = 2.0 to 2.5 GHz, Vcont (H) = 3.0 V, Vcont (L) = 0 V
 Lins5 = 0.35 dB TYP. @ f = 2.5 to 3.0 GHz, Vcont (H) = 3.0 V, Vcont (L) = 0 V
 ISL1 = 32 dB TYP. @ f = 0.5 to 0.5 GHz, Vcont (H) = 3.0 V, Vcont (L) = 0 V
 ISL2 = 28 dB TYP. @ f = 0.5 to 1.0 GHz, Vcont (H) = 3.0 V, Vcont (L) = 0 V
 ISL3 = 27 dB TYP. @ f = 1.0 to 2.0 GHz, Vcont (H) = 3.0 V, Vcont (L) = 0 V

: ISL3 = 27 dB TYP. @ f = 1.0 to 2.0 GHz, $V_{cont}(H) = 3.0 \text{ V}$, $V_{cont}(L) = 0 \text{ V}$: ISL4 = 26 dB TYP. @ f = 2.0 to 2.5 GHz, $V_{cont}(H) = 3.0 \text{ V}$, $V_{cont}(L) = 0 \text{ V}$: ISL5 = 24 dB TYP. @ f = 2.5 to 3.0 GHz, $V_{cont}(H) = 3.0 \text{ V}$, $V_{cont}(L) = 0 \text{ V}$: Pin (1 dB) = +27.0 dBm TYP. @ f = 0.5 to 3.0 GHz, $V_{cont}(H) = 3.0 \text{ V}$, $V_{cont}(L) = 0 \text{ V}$: Pin (1 dB) = +20.0 dBm TYP. @ f = 0.5 to 3.0 GHz, $V_{cont}(H) = 1.8 \text{ V}$, $V_{cont}(L) = 0 \text{ V}$

High-density surface mounting: 6-pin super minimold package (2.0 × 1.25 × 0.9 mm)

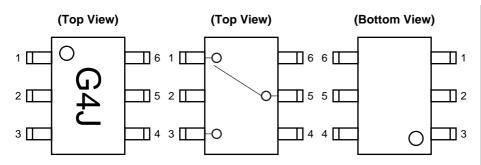
APPLICATIONS

Handling power

- · L, S-band digital cellular or cordless telephone
- W-LAN, WLL and Bluetooth[™] etc.

★ ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
μPG2214TB-E4	6-pin super minimold (2012)	G4J	 Embossed tape 8 mm wide Pin 4, 5, 6 face the perforation side of the tape Qty 3 kpcs/reel


Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: μ PG2214TB

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name	
1	OUTPUT1	
2	GND	
3	OUTPUT2	
4	V _{cont2}	
5	INPUT	
6	V _{cont1}	

TRUTH TABLE

V _{cont1}	V _{cont2}	INPUT-OUTPUT1	INPUT-OUTPUT2
Low	High	ON	OFF
High	Low	OFF	ON

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Switch Control Voltage	Vcont	+6.0 Note	V
Input Power	Pin	+30	dBm
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	Tstg	-55 to +150	°C

Note $|V_{cont1} - V_{cont2}| \le 6.0 \text{ V}$

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Switch Control Voltage (H)	V _{cont (H)}	1.8	3.0	5.3	V
Switch Control Voltage (L)	V _{cont (L)}	-0.2	0	0.2	V

ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcont (H) = 3.0 V, Vcont (L) = 0 V, DC cut capacitors = 100 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins1	f = 0.05 to 0.5 GHz ^{Note 1}	1	0.25	0.45	dB
Insertion Loss 2	Lins2	f = 0.5 to 1.0 GHz	1	0.25	0.45	dB
Insertion Loss 3	Lins3	f = 1.0 to 2.0 GHz	ı	0.30	0.50	dB
Insertion Loss 4	Lins4	f = 2.0 to 2.5 GHz	1	0.35	0.55	dB
Insertion Loss 5	Lins5	f = 2.5 to 3.0 GHz	1	0.35	0.60	dB
Isolation 1	ISL1	f = 0.05 to 0.5 GHz ^{Note 1}	29	32	_	dB
Isolation 2	ISL2	f = 0.5 to 1.0 GHz	25	28	-	dB
Isolation 3	ISL3	f = 1.0 to 2.0 GHz	24	27	_	dB
Isolation 4	ISL4	f = 2.0 to 2.5 GHz	23	26	-	dB
Isolation 5	ISL5	f = 2.5 to 3.0 GHz	21	24	_	dB
Input Return Loss 1	RLin1	f = 0.05 to 0.5 GHz ^{Note 1}	15	20	_	dB
Input Return Loss 2	RLin2	f = 0.5 to 3.0 GHz	15	20	_	dB
Output Return Loss 1	RL _{out1}	f = 0.05 to 0.5 GHz ^{Note 1}	15	20	_	dB
Output Return Loss 2	RL _{out2}	f = 0.5 to 3.0 GHz	15	20	-	dB
0.1 dB Loss Compression	Pin (0.1 dB)	f = 2.0/2.5 GHz	+21.0	+23.0	_	dBm
Input Power Note 2		f = 0.5 to 3.0 GHz	1	+23.0	_	dBm
1 dB Loss Compression Input Power Note 3	Pin (1 dB)	f = 0.5 to 3.0 GHz	-	+27.0	-	dBm
2nd Harmonics	2 f ₀	f = 2.0 GHz, Pin = +15 dBm	-	-55	-47	dBc
		f = 2.5 GHz, Pin = +15 dBm	-	-55	-47	dBc
3rd Harmonics	3fo	f = 2.0 GHz, Pin = +15 dBm	-	-55	-47	dBc
		f = 2.5 GHz, Pin = +15 dBm	-	-55	-47	dBc
Intermodulation Intercept Point	IIP ₃	f = 0.5 to 3.0 GHz, 2 tone, P _{in} = +16 dBm, 5 MHz spicing	-	+58	-	dBm
Switch Control Current	Icont		-	4	20	μΑ
Switch Control Speed	tsw	50% CTL to 90/10% RF	_	20	200	ns

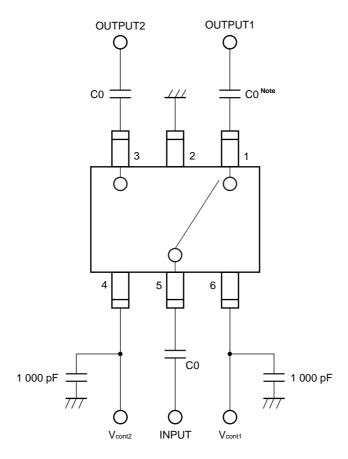
Notes 1. DC cut capacitors = 1 000 pF at f = 0.05 to 0.5 GHz

- 2. Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.
- **3.** Pin (1 dB) is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

3

ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcont (H) = 1.8 V, Vcont (L) = 0 V, DC cut capacitors = 100 pF, unless otherwise specified)

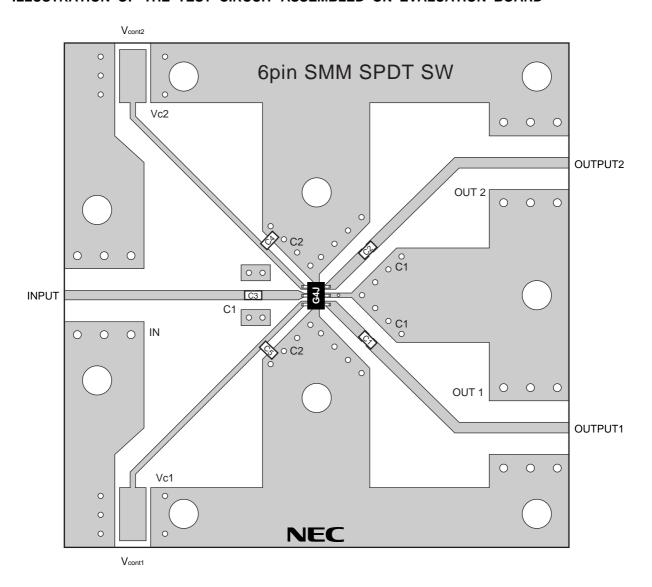

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 6	Lins6	f = 0.05 to 0.5 GHz Note 1	-	0.25	0.50	dB
Insertion Loss 7	Lins7	f = 0.5 to 1.0 GHz	-	0.25	0.50	dB
Insertion Loss 8	Lins8	f = 1.0 to 2.0 GHz	-	0.30	0.55	dB
Insertion Loss 9	Lins9	f = 2.0 to 2.5 GHz	-	0.35	0.60	dB
Insertion Loss 10	Lins10	f = 2.5 to 3.0 GHz	-	0.35	0.65	dB
Isolation 6	ISL6	f = 0.05 to 0.5 GHz ^{Note 1}	27	30	-	dB
Isolation 7	ISL7	f = 0.5 to 2.0 GHz	23	27	-	dB
Isolation 8	ISL8	f = 2.0 to 2.5 GHz	21	25	-	dB
Isolation 9	ISL9	f = 2.5 to 3.0 GHz	20	24	_	dB
Input Return Loss 3	RLin3	f = 0.05 to 3.0 GHz ^{Note 1}	15	20	-	dB
Output Return Loss 3	RLout3	f = 0.05 to 3.0 GHz ^{Note 1}	15	20	-	dB
0.1 dB Loss Compression	Pin (0.1 dB)	f = 2.0/2.5 GHz	+14.0	+17.0	-	dBm
Input Power Note 2		f = 0.5 to 3.0 GHz	_	+17.0	-	dBm
1 dB Loss Compression Input Power Note 3	Pin (1 dB)	f = 0.5 to 3.0 GHz	-	+20.0	-	dBm
Switch Control Current	Icont		-	4	20	μΑ
Switch Control Speed	tsw	50% CTL to 90/10% RF	-	20	200	ns

- Notes 1. DC cut capacitors = 1 000 pF at f = 0.05 to 0.5 GHz
 - 2. Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.
 - **3.** Pin (1 dB) is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

Caution This device is used it is necessary to use DC cut capacitors.

The value of DC cut capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system. The range of recommended DC cut capacitor value is less than 100 pF.

EVALUATION CIRCUIT



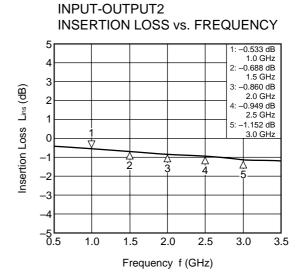
Note $\,$ C0 : 0.05 to 0.5 GHz $\,$ 1 000 pF

: 0.5 to 3.0 GHz 100 pF

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

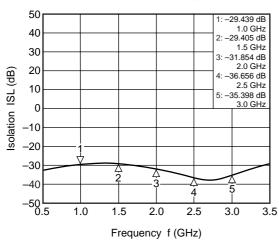
USING THE NEC EVALUATION BOARD

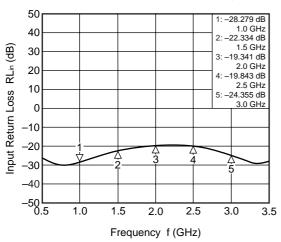

Symbol	Values
C1, C2, C3	100 pF
C4, C5	1 000 pF

* TYPICAL CHARACTERISTICS

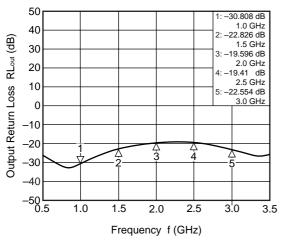
INPUT-OUTPUT1

(TA = +25°C, Vcont (H) = 3.0 V, Vcont (L) = 0 V, DC cut capacitors = 100 pF, unless otherwise specified)

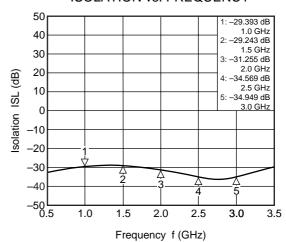

INSERTION LOSS vs. FREQUENCY 1: -0.533 dB 1.0 GHz 2: -0.674 dB 1.5 GHz 3: -0.830 dB 4 3 Insertion Loss Lins (dB) 2.0 GHz -0.939 dB 2 2.5 GHz 5: -1.142 dB 3.0 GHz 0 -2 -3 -4 -5**-**0.5 1.0 3.0 2.0 2.5 3.5 1.5 Frequency f (GHz)


Remark The graphs indicate nominal characteristics.

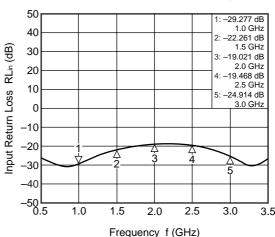
Caution These characteristics values include the losses of the NEC evaluation board.


INPUT-OUTPUT1 ISOLATION vs. FREQUENCY

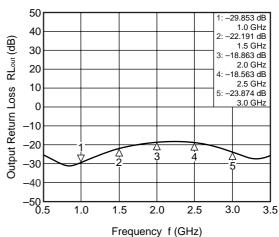
INPUT-OUTPUT1 INPUT RETURN LOSS vs. FREQUENCY

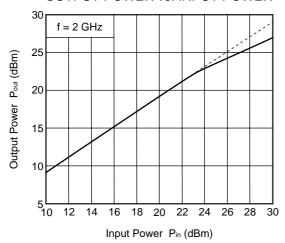


INPUT-OUTPUT1 OUTPUT RETURN LOSS vs. FREQUENCY



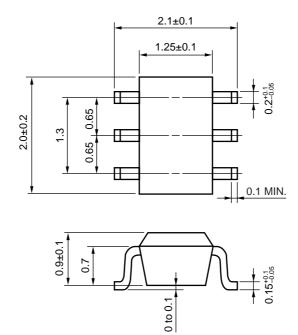
Remark The graphs indicate nominal characteristics.


INPUT-OUTPUT2 ISOLATION vs. FREQUENCY


INPUT-OUTPUT2 INPUT RETURN LOSS vs. FREQUENCY

INPUT-OUTPUT2 OUTPUT RETURN LOSS vs. FREQUENCY

OUTPUT POWER vs. INPUT POWER



Remark The graph indicate nominal characteristics.

9

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	H\$350

Caution Do not use different soldering methods together (except for partial heating).

11

NEC μ PG2214TB

Bluetooth is a trademark owned by Bluetooth SIG, Inc., U.S.A.

 The information in this document is current as of October, 2004. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

NEC μ PG2214TB

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

▶ For further information, please contact

NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/

E-mail: salesinfo@ml.ncsd.necel.com (sales and general)

techinfo@ml.ncsd.necel.com (technical)

Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-0 FAX: +49-211-6503-1327

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279