

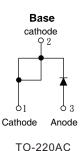
N-HFA08TB60 1018

Nell High Power Products

FRED Ultrafast Soft Recovery Diode, 8 A

FEATURES

- Ultrafast recovery
- Ultrasoft recovery
- Very low I_{RRM}
- Very low Qrr
- Specified at operating conditions
- Lead (Pb)-free
- Designed and qualified for industrial level


BENEFITS

- Reduced RFI and EMI
- Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- Reduced parts count

DESCRIPTION

HFA08TB60 is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600V and 8 A continuous current, the HFA08TB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the FRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The FRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These FRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The FRED HFA08TB60 is ideally suited for applications in power supplies and conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

PRODUCT SUMMARY	
V _R	600 V
V _F at 8A at 25 ℃	1.7 V
I _{F(AV)}	8 A
t _{rr} (typical)	18 ns
T _J (maximum)	150 °C
Q _{rr} (typical)	65 nC
dl _{(rec)M} /dt (typical)	240 A/µS
I _{RRM}	5.0A

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Cathode to anode voltage	V _R		600	V		
Maximum continuous forward current	I _F	Tc = 100 °C	8			
Single pulse forward current	I _{FSM}		60	А		
Maximum repetitive forward current	I _{FRM}		24			
Maximum power dissipation	P _D	Tc = 25 °C	36	W		
		Tc = 100 °C	14	~ ~ ~ ~		
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C		

ELECTRICAL SPECIFICA	TIONS	S (T _J = 25 °C unless otherwise specified)				
PARAMETER	SYMBOL	TEST CONDITIONS MIN. TYP.		MAX.	UNITS	
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA	600	-	-	
Maximum forward voltage	V _{FM}	I _F = 8.0 A	-	1.4	1.7	V
		I _F = 16 A	-	1.7	2.1	
		I _F = 8.0 A, T _J = 125 °C	-	1.4	1.7	
Maximum reverse	IBM	$V_R = V_R$ rated	-	0.3	5.0	
leakage current		$T_J = 125^{\circ}C, V_R = V_R rated$	-	100	500	μA
Junction capacitance	CT	V _R = 200V	-	10	25	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nH

DYNAMIC RECOVERY CHARACTERISTICS PERLEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNITS
Reverse recovery time	+	I _F = 0.5A, I _R = 1.0A, I _{RR} = 250mA (RG#1 CKT)		-	25	-	ns
	t _{rr}	I_F = 1.0 A, dI _F /dt = -200 A/µs, V _R =30 V, T _J = 25°C		-	18	-	
	t _{rr1}	T _J = 25 °C	I _F = 8.0A dI _F /dt = -200 A/μs V _R = 200 V	-	37	55	- A
	t _{rr2}	T _J = 125 °C		-	55	90	
Peak recovery current	I _{RRM1}	T _J = 25 °C		-	3.5	5.0	
	I _{RRM2}	T _J = 125 °C		-	4.5	8.0	
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	65	138	nC
	Q _{rr2}	T _J = 125 °C		-	124	360	
Peak rate of fall of recovery current during \boldsymbol{t}_{b}	dl _{(rec)M} /dt1	T _J = 25 °C	-	-	240	-	A/µs
	dl _{(rec)M} /dt2	T _J = 125 °C		-	210	-	

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C	
Thermal resistance, junction to case	R _{thJC}		-	-	3.5		
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	80	K/W	
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-		
Weight			-	2.0	-	g	
			-	0.07	-	oz.	
Mounting torque			6.0 (5.0)	-	12 (10)	kgf . cm (lbf . in)	
Marking device		Case style TO-220AC	HFA08TB60				

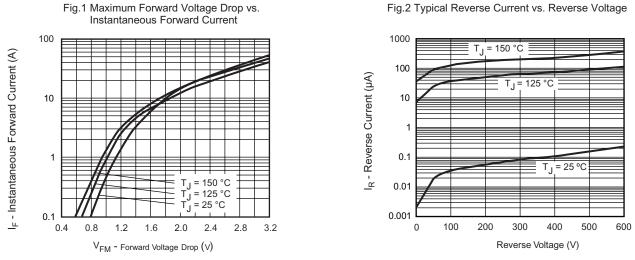
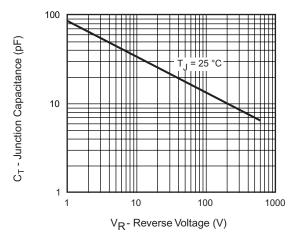



Fig.3 Typical Junction Capacitance vs. Reverse Voltage

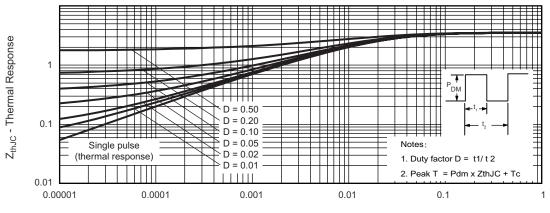


Fig.6 Typical Recovery Current vs. dl_F/dt

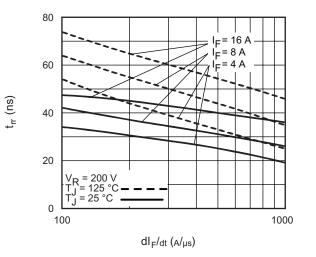
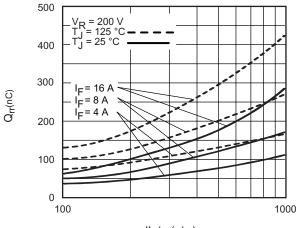
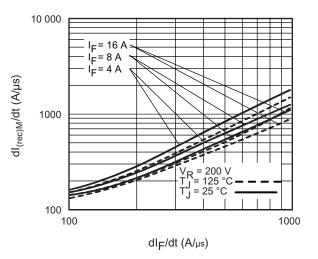



Fig.5 Typical Reverse Recovery Time vs. dI_F/dt


Fig.7 Typical Stored Charge vs. dl_F/dtl

 dI_F/dt (A/µs)

 $(\textbf{W})_{E} = \begin{array}{c} 20 \\ \textbf{W}_{R} = 200 \text{ V} \\ \textbf{T}_{J} = 125 \text{ °C} \\ \textbf{T}_{J} = 25 \text{ °C} \\ \textbf{H}_{F} = 16 \text{ A} \\ \textbf{H}_{F} = 8 \text{ A} \\ \textbf{H}_{F} = 4 \text{ A}$

www.nellsemi.com

Fig.9 Reverse Recovery Parameter Test Circuit

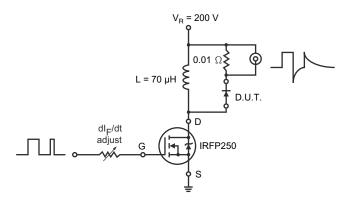
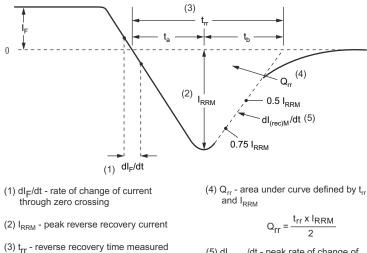
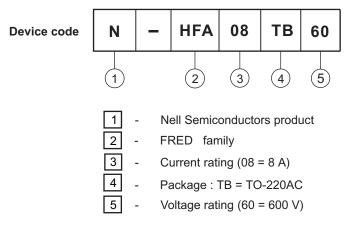
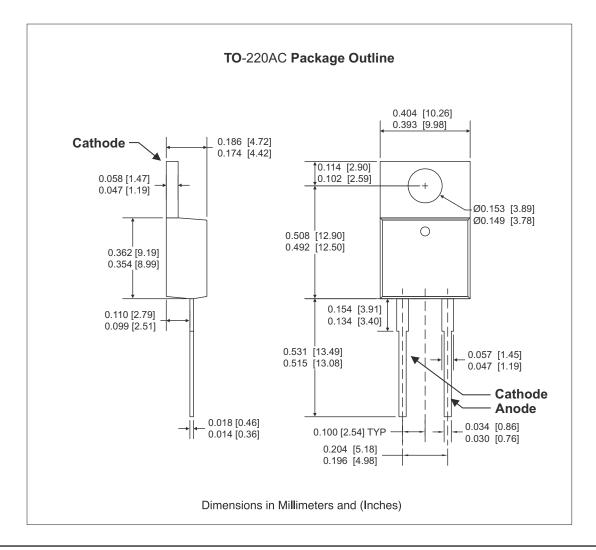



Fig.10 Reverse Recovery Waveform and Definitions


 $\begin{array}{l} \text{(3) } t_{\text{rr}} \text{ - reverse recovery time measured} \\ \text{from zero crossing point of negative} \\ \text{going I}_{\text{F}} \text{ to point where a line passing} \\ \text{through } 0.75 \ \text{I}_{\text{RRM}} \text{ and } 0.50 \ \text{R}_{\text{M}} \\ \text{extrapolated to zero current.} \end{array}$


(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

ORDERING INFORMATION TABLE

