# V2 Power Shelf Power Module Battery Back-up Unit

Bel Power Solutions 6600 W stand-alone **V2 Power Shelf** with a main 12.6 VDC output and a 54 VDC auxiliary output is powered from three-phase AC line and hosting three 3300 W (N + 1) hot-swappable single phase **V2 Power Modules** and three battery back-up units (BBU).

At System level, this device will work in conjunction with BBU modules (installed in the same shelf) for power back-up functions.

This product is used for IT Systems, for both reliable online & back-up power functions, offering high performance and very high efficiency and power quality.

# **Key Features & Benefits**

- High efficiency > 95.9 % @ 277 VAC, 50% load
- High power quality (Power Factor and THD)
- Redundant (2+1) output 6600 W / 12.6 VDC with active current sharing
- Redundant (2+1) auxiliary output 600 W / 54 VDC
- Houses 3 x 3300 W power modules
- Houses 3 x 3600 W Lithium-Ion Battery Backup Modules supporting a 90 s back-up capability in case of AC outage
- Open compute (OCP) compliant
- 3 Phase 200 VAC 277 VAC input to shelf
- Hot-plug capable
- Digital control for improved performance
- RS485 communication interface for control, programming and monitoring based on MODBUS V1.02
- Status LED with fault signaling







# **1. ORDERING INFORMATION**

| PRODUCT                  | ORDERING CODE  |
|--------------------------|----------------|
| 3300 W Power Module      | SPAFCBK-11G    |
| 6600 W Power Shelf       | SPSFCBK-18     |
| Power Module Blank Panel | SPSFCBK-12BP01 |
| Battery Module Panel     | SPSFCBK-12BP02 |

# 2. OVERVIEW

The SPAFCBK-11G AC/DC power module is a MCU/DSP controlled, highly efficient front-end power supply. It incorporates resonant-soft-switching technology to reduce component stresses, providing increased system reliability and very high power conversion efficiency.

The PFC stage is digitally controlled using a state-of-the-art digital signal processing algorithm to guarantee best efficiency and unity power factor over a wide operating range.

The main DC/DC stage (12.6 V / 3300 W) uses soft switching resonant techniques in conjunction with synchronous rectification. An active OR-ing device on the output ensures no reverse load current and renders the supply ideally suited for operation in redundant power systems.

The auxiliary DC/DC stage (54 VDC / 300 W) uses a soft switching resonant topology and is also protected with an active OR-ing device for maximum reliability.

The DC/DC converter from the battery input (3600 W) provides power to the internal high voltage bus and allows the outputs to continue up to 90 s during AC outage. The battery charger stage (52.5 V / 270 W) re-charges the battery backup unit (BBU).

Status information is provided with a front-panel LED. The RS485 bus allows full monitoring of the supply, including input and output voltage, current, power, and internal temperatures. The same RS485 bus supports the bootloader to allow field update of the firmware in the MCU and the DSPs.

The supply is cooled by a regulated fan and the air direction matches regular data center rack configurations. The fan speed is adjusted automatically depending on the supply temperature.



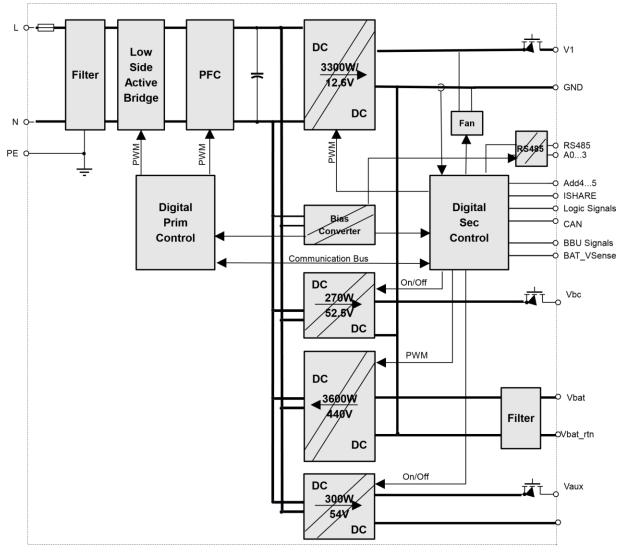



Figure 1. SPAFCBK-11G Block Diagram

The SPSFCBK-18 power shelf houses 3 power supply units (PSU) and 3 battery back-up units (BBUs) and maximizes power availability in demanding server, network, and other high availability applications.

The main 12.6 VDC output offers 6600 W power in 2+1 redundant operation on a single output busbar on the back side of the shelf, which is directly connected to the output busbar of all PSUs. Power balancing between the units is ensured by an active current share scheme.

The auxiliary 54 VDC output offer 600 W power in 2+1 redundant operation on a single output connector on the rear side of the shelf.

A wiring harness connects the PSU to the BBU and the power shelf. Each PSU has its own BBU and there is no direct interconnection between the BBUs.



 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 225 977
 +1 408 785 5200

© 2018 Bel Power Solutions

BCD.00343\_010

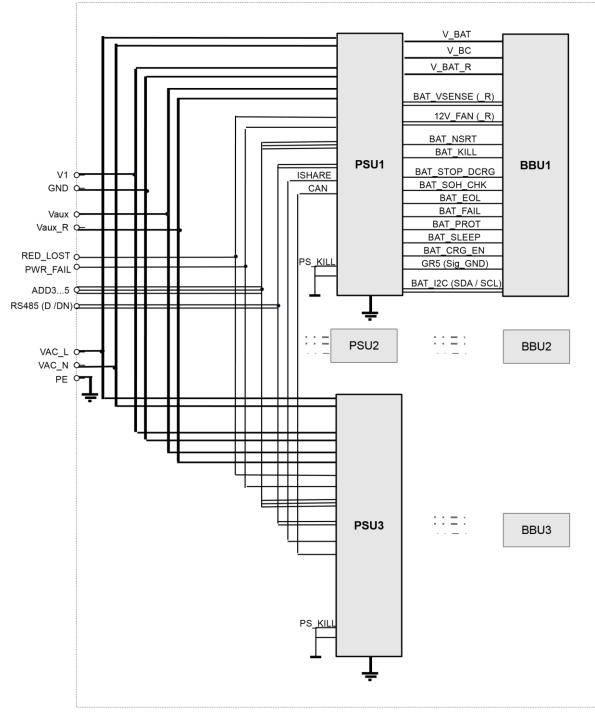



Figure 2. SPSFCBK-18 Block Diagram



In case some of the PSU or BBU are not populated in the shelf, the blank panels SPSFCBK-12BP01 (PSU) and SPSFCBK-12BP01 (BBU) can be assembled to cover the slots and avoid reverse airflow.

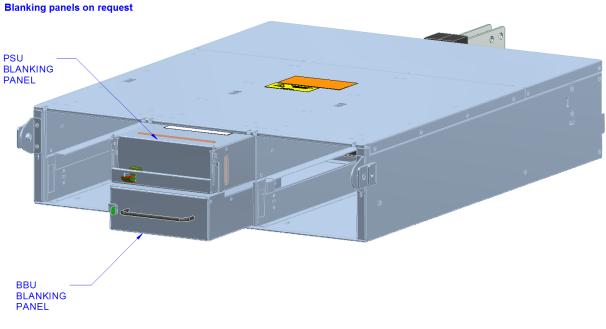



Figure 3. Shelf with Blanking Panels



Asia-Pacific Eur +86 755 298 85888

Europe, Middle East +353 61 225 977 North America

+1 408 785 5200 BCD.00343\_010

6

## 3. V2 POWER MODULE



### 3.1 ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability, and cause permanent damage to the supply.

| PARAMETER |                       | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT |
|-----------|-----------------------|-------------------------|-----|-----|-----|------|
| Vi maxc   | Maximum Input Voltage | Continuous              |     |     | 305 | VAC  |

### 3.2 **INPUT**

General Condition:  $T_A = 0...45$  °C unless otherwise noted. Load condition definition: 100% load corresponds to the following, and any fraction of it is scaling down all outputs simultaneously.

- (i) Main 12.6 V: 3300 W + Auxiliary 54 V: 300 W + Battery Charger 52.5 V: 270 W in AC operation
- (ii) Main 12.6 V: 3300 W + Auxiliary 54 V: 300 W in DC operation

| PARAMET                | TER                                 | DESCRIPTION / CONDITION                                    | MIN   | NOM   | MAX   | UNIT |
|------------------------|-------------------------------------|------------------------------------------------------------|-------|-------|-------|------|
| AC Input               |                                     |                                                            |       |       |       |      |
| Viac nom               | Nominal Input Voltage               |                                                            | 200   | 277   |       | VAC  |
| Viac                   | Input Voltage Range                 | Normal operating                                           | 180   |       | 305   | VAC  |
| liac max               | Input Current                       | @ steady state, 100% Load, Vin = 180 VAC                   |       | 22.8  |       | А    |
| liac inrush            | Inrush Current Limitation           | @ cold start, Vin = 290 VAC, T <sub>A</sub> = 35°C         |       |       | 30    | AP   |
| fi                     | Input Frequency                     |                                                            | 40    | 50/60 | 63    | Hz   |
|                        |                                     | >15% of max load, 277 VAC                                  | 0.95  | 0.966 |       | W/VA |
| PF                     | Power Factor                        | 20% Load, 277 VAC, 60 Hz                                   |       | 0.981 |       | W/VA |
| FF                     |                                     | 50% Load, 277 VAC, 60 Hz                                   |       | 0.996 |       | W/VA |
|                        |                                     | 100% Load, 277 VAC, 60 Hz                                  |       | 0.999 |       | W/VA |
| THD                    | Total Harmonic<br>Distortion        | >15% of max load, 277 VAC, 60 Hz                           |       | 7.4   | 10    | %    |
| Viac on                | Turn-on Input Voltage <sup>1</sup>  | Ramping up                                                 | 171   |       | 180   | VAC  |
| Viac off               | Turn-off Input Voltage <sup>1</sup> | Ramping down                                               | 165.5 |       | 172.5 | VAC  |
|                        |                                     | V <sub>IN</sub> = 277 VAC, 10% load                        |       | 93.81 |       | %    |
| н                      | Efficiency <sup>2</sup>             | V <sub>IN</sub> = 277 VAC, 20% load                        |       | 95.28 |       | %    |
| п                      | Eniciency                           | V <sub>IN</sub> = 277 VAC, 50% load                        |       | 95.96 |       | %    |
|                        |                                     | V <sub>IN</sub> = 277 VAC, 100% load                       |       | 94.70 |       | %    |
| <b>-</b>               | Lield up Time V                     | $V_{\rm IN}$ = 277 VAC, load 3300 W / 12.6 V, 300 W / 54 V | 20    |       |       | ms   |
| T <sub>V1 holdup</sub> | Hold-up Time V1                     | V <sub>IN</sub> = 277 VAC, 100% load                       |       | 24    |       | ms   |
| TVSB holdup            | Hold-up Time V <sub>AUX</sub>       | V <sub>IN</sub> = 277 VAC, 100% load                       |       | 20    |       | ms   |
|                        | BULK Capacitors Rating              | @ 105 °C                                                   |       |       | 500   | VDC  |
| V <sub>on bias</sub>   | Internal Bias Supply<br>Startup     | Correspondent to 140 VDC on the bulk capacitors            |       | 94    | 100   | VAC  |
|                        |                                     |                                                            |       |       |       |      |



| DC Input (from BBU) |                        |                                |      |      |    |     |  |
|---------------------|------------------------|--------------------------------|------|------|----|-----|--|
| Vidc nom            | Nominal Input Voltage  |                                | 33.8 | 52.5 |    | VDC |  |
| pV <sub>idc</sub>   | DC Input Voltage Range |                                | 32   |      | 53 | VDC |  |
| lidc max            | Input Current          | @ steady state, Vin = 33.8 VDC |      | 125  |    | А   |  |

<sup>1</sup> The Front-End is provided with a minimum hysteresis of 8 V during turn-on and turn-off within the ranges

<sup>2</sup> Efficiency measured with Fan supplied externally and only main output loaded.

### 3.2.1 INRUSH CURRENT

The AC-DC power supply exhibits an X-capacitance of only 5.2  $\mu$ F resulting in only a low and short peak current when the supply is connected to the mains. The internal bulk capacitor will be charged through an NTC which will limit the inrush current.

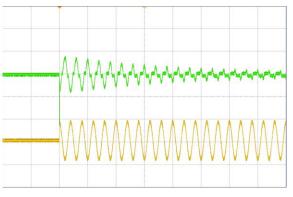
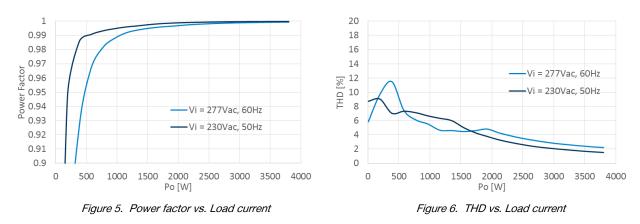




Figure 4. Inrush current, Vin = 290 VAC, 90° CH1: Vin (500 V/div), CH2: Iin (10 A/div)

### 3.2.2 POWER FACTOR CORRECTION & THD

Power factor correction (PFC) is achieved by controlling the input current waveform synchronously with the input voltage. A fully digital controller is implemented giving outstanding power factor results over a wide input voltage and load ranges. The input current will follow the shape of the input voltage. If for instance the input voltage has a trapezoidal waveform, then the current will also show a trapezoidal waveform.





 Asia-Pacific
 Europe, Middle East
 No

 +86 755 298 85888
 +353 61 225 977
 +1 4

BCD.00343\_010

7

### 3.2.3 EFFICIENCY

High efficiency (see *Figure 7*) is achieved by using state-of-the-art silicon power devices in conjunction with softtransition topologies minimizing switching losses and a full digital control scheme. Synchronous rectifiers on the output reduce the losses in the high current output path. The speed of the fan is digitally controlled to keep all components at an optimal operating temperature regardless of the ambient temperature and load conditions. Setup: Single unit in Shelf Slot1, VAC and V1 measurement at PCB level at the connector. Fan externally supplied. Only main output loaded.

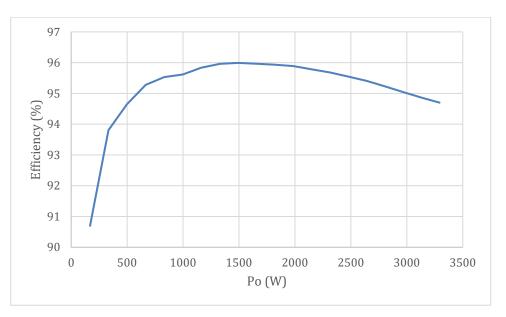



Figure 7. Efficiency vs. Load current in AC Operation; Vin = 277 VAC

### 3.2.4 HIGH VOLTAGE BULK CAPACITORS

The internal high voltage bulk capacitors which are charged through the PFC stage and in case of AC outage through the current feed converter from the BBU have a voltage rating of 500 VDC.

### 3.2.5 INTERNAL BIAS SUPPLY

The internal bias supply which is powering the control and communication circuit turns on at a AC input voltage level  $V_{\text{on bias}}$ . This is the minimum voltage required to be able to communicate to the unit.



### **3.3 OUTPUT**

General Condition: TA = 0...45 °C unless otherwise noted.

| PARAMETE                  | ER                                    | DESCRIPTION / CONDITION                                                                                     | MIN  | NOM  | MAX  | UNIT      |
|---------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|------|-----------|
| Main Outpu                | t V1 (12.6 V)                         |                                                                                                             |      |      |      |           |
| V <sub>1 nom</sub>        | Nominal Output Voltage                | @ 100/ landing                                                                                              |      | 12.6 |      | VDC       |
| V <sub>1 set</sub>        | Output Setpoint Accuracy              | @ 10% loading                                                                                               | -1   |      | +1   | %V1 non   |
| $dV_{1 \ tot}$            | Total Static Regulation               | $V_{i \text{ min}}$ to $V_{i \text{ max}}$ , 0 to 100% $I_{1 \text{ nom}}$ (excl. load regulation)          | -1   |      | +1   | $%V_1$    |
| P <sub>1 nom</sub>        | Output Power                          |                                                                                                             |      | 3300 |      | W         |
| I <sub>1 nom</sub>        | Output Current                        |                                                                                                             |      | 265  |      | ADC       |
| dV <sub>1 load</sub>      | Load Regulation                       | Vi nom, 0 to 100% I <sub>1 nom</sub> , incl. output connector drop                                          |      | 215  |      | mV        |
| dV1 line ac               | AC Line Regulation                    | Viac min to Viac max                                                                                        | -30  | 0    | 30   | mV        |
| $dV_1$ line dc            | DC Line Regulation                    | Vidc min to Vidc max                                                                                        | -30  | 0    | 30   | mV        |
| dV <sub>1 lt</sub>        | Load Transient Response               | $I_1 = 50 -> 100\% I_{1 \text{ nom}}, C_{ext} = 0 \text{ mF},$                                              |      | 0.5  | 0.6  | VDC       |
| T <sub>rec</sub>          | Recovery Time                         | $dI_1/dt = 1A/\mu s$ , recovery within 1% of V <sub>1 nom</sub>                                             |      | 1    | 5    | ms        |
| t <sub>V1 rise</sub>      | Output Voltage Rise Time              | $V_1 = 1090\% V_1 \text{ nom, Cext} = 0$                                                                    |      | 2    | 20   | ms        |
| t <sub>V1 on</sub>        | Output turn-on time                   | under any conditions with Vin > 200 VAC                                                                     |      |      | 2    | s         |
| Cv1 load                  | Capacitive Loading                    |                                                                                                             | 0    |      | 66   | mF        |
| Auxiliary Ou              | itput V <sub>AUX</sub> (54 V)         |                                                                                                             |      |      |      |           |
| VAUX nom                  | Output Voltage                        | @ 10% loading                                                                                               |      | 54   |      | VDC       |
| $dV_{AUX tot}$            | Total Static Regulation               | Vi min to Vi max, 0 to 100% I <sub>AUX nom</sub><br>(excl. Load regulation)                                 | -1   |      | +1   | $%V_{BC}$ |
| PAUX nom                  | Output Power                          |                                                                                                             |      | 300  |      | W         |
| I <sub>AUX nom</sub>      | Output Current                        |                                                                                                             | 0    |      | 5.7  | А         |
| dVAUX load                | Load Regulation                       | $V_{i \text{ nom}}, 0 \text{ to } 100\%  I_{\text{AUX nom}}, \text{ incl. output connector} drop$           |      | 1.9  |      | V         |
| $dV_{\text{AUX}}$ line ac | AC Line Regulation                    | Viac min to Viac max                                                                                        | -50  | 0    | 50   | mV        |
| $dV_{AUX}$ line dc        | DC Line Regulation                    | Vidc min to Vidc max                                                                                        | -50  | 0    | 50   | mV        |
| dV <sub>AUX</sub> It      | Load Transient Response               | $I_{AUX}=50$ -> 100% $I_{AUX\;nom},\;C_{ext}=0$ mF,                                                         |      |      | 1.35 | VDC       |
| t <sub>rec</sub>          | Recovery Time                         | $dI_{AUX}/dt = 1A/\mu s$ , recovery within 1% of $V_{AUX nom}$                                              |      | 50   |      | ms        |
| t <sub>VAUX</sub> rise    | Output Voltage Rise Time              | $V_1 = 1090\% V_{1 \text{ nom}}, C_{ext} = 0 \text{ mF}$                                                    |      | 70   | 100  | ms        |
|                           | Output turn-on                        | under any conditions with Vin > 200 VAC from V <sub>1</sub> in regulation to V <sub>AUX</sub> in regulation |      | 260  |      | ms        |
| CVAUX load                | Capacitive Loading                    |                                                                                                             | 0    |      | 3.3  | mF        |
| Battery Cha               | nrger Output V <sub>BC</sub> (52.5 V) |                                                                                                             |      |      |      |           |
| V <sub>BC nom</sub>       | Output Voltage                        | @ 10% loading                                                                                               |      | 52.5 |      | VCD       |
| $dV_{BC \ tot}$           | Total Static Regulation               | $V_{imin}$ to $V_{imax},0$ to 100% $I_{BCnom}$                                                              | -0.5 |      | +0.5 | $%V_{BC}$ |
| P <sub>BC nom</sub>       | Output Power                          |                                                                                                             |      | 270  |      | W         |
|                           | Output Current                        |                                                                                                             | 0    |      | 5    | А         |
| $dV_{\text{BC load}}$     | Load Regulation                       | $V_{i \text{ nom}}$ , 0 to 100% $I_{BC \text{ nom}}$ , incl. output connector drop                          | 170  | 220  | 282  | mV        |
| $dV_{\text{BC}}$ line     | AC Line Regulation                    | Viac min to Viac max                                                                                        | -40  | 0    | 40   | mV        |
| t <sub>VBC rise</sub>     | Output Voltage Rise Time              | $V_1 = 1090\% V_{BC nom}$                                                                                   |      | 80   | 150  | ms        |
|                           |                                       |                                                                                                             |      |      |      |           |



**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977 North America

+1 408 785 5200 BCD.00343\_010

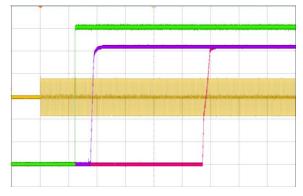



Figure 8. Turn-On AC Line 277VAC, full load (500ms/div) CH1: Vin (500V/div) CH2: V<sub>1</sub> (2V/div) CH3: V<sub>AUX</sub> (10V/div) CH4: V<sub>BC</sub> (10V/div)

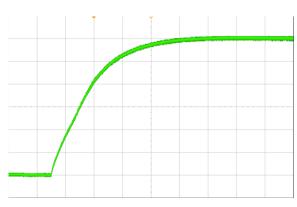



Figure 9. Rise time V1 at 277VAC, full load (500µs/div) CH2: V1 (2V/div)




Figure 10. Rise time V<sub>AUX</sub> at 277VAC, full load (20ms/div) CH3: V<sub>AUX</sub> (10V/div)

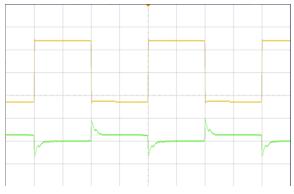



Figure 12. Load transient V<sub>1</sub>, 133A to 265A, 1A/µs (5ms/div) CH1: I<sub>1</sub> (50A/div) CH2: V<sub>1</sub> (500mV/div)

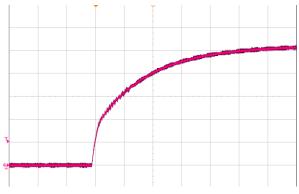



Figure 11. Rise time VBC at 277AC, 2A load (50ms/div) CH4: V<sub>BC</sub> (10V/div)

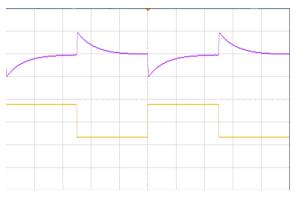



Figure 13. Load transient V<sub>AUX</sub>, 2.8A to 5.7A (100ms/div) CH1: I<sub>AUX</sub> (2A/div) CH2: V<sub>AUX</sub> (1V/div)



### 3.3.1 OUTPUT ISOLATION

Main, auxiliary and battery charger output and all signals are isolated from the chassis and protective earth connection. However, the applied voltage between any of these voltages and chassis must not exceed 100 Vpeak to prevent any damage to the supply.

The RS485 communication lines and shelf/rack addresses (RS485\_D / RS485\_DN / ADD3...5) are additionally isolated from all others.

Internal to the module the main output ground (GR1, also connected directly to FAN\_SUPPLY\_R in the module), the auxiliary ground (AUX\_54V\_R) and the battery charger ground (BAT\_R) are interconnected through 10  $\Omega$  resistors to prevent any circulating current within the supply. The signal ground (GR5) is connected with 0.33  $\Omega$  to the main output ground.

## 3.4 BACKUP AND BATTERY CHARGE BEHAVIOR

Each of the power modules is separately connected to its Battery Backup unit (BBU). The BBU and PSU are designed to support maximum 90 s of full load back-up time in case of an outage.

The battery is being re-charged by the 270 W (5 A /52.5 V) battery charger circuit in the PSU.

The BBU has 8 digital lines to the PSU with which it flags errors and requests operations (see also section 3.7).

Additionally, there is also an I2C communication between the PSU and the BBU which is implemented to allow the user to access some of the battery registers via the RS485 interface.

### 3.4.1 BACKUP BEHAVIOR

If the AC input voltage is falling below  $V_{iac off}$  or if the frequency is outside the valid operating range f<sub>i</sub>, the PSU is changing to DC operation and taking the power from the BBU.

The power module implements a soft startup when transitioning to battery backup mode, limiting the current overshoot as the bulk voltage is ramped back to a nominal level. No deviation occurs on the main output voltage.



Figure 14. Backup Transition CH1: V1 (2V/div) CH2: Ibatt (20A/div) Ch3: VBULK (20V/div) Ch4: VAC(200V/div)

After 45 s in DC operation the PWR\_FAIL signal is set. After 90 s without AC return the PSU is shutting down and only is restarting with a valid AC voltage restored.



 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 225 977
 +1 408 785 5200

© 2018 Bel Power Solutions BCD.00343\_010

11

If a valid AC voltage is re-applied after less than 90 s, the shelf is transitioning back to AC operation without any deviation at the output. The time between AC voltage present and the transition from DC to AC operation is random from one shelf to the other to reduce the stress on the AC supply.

### 3.4.2 BATTERY CHARGER BEHAVIOR

The BBU decides on its own if it needs to be re-charged. Charging is requested by setting the BAT\_CRG\_EN flag. The PSU reacts on this flag by starting the 52.5 V battery charger with a controlled current ramp up. If the battery charger is running for more than 5 consecutive hours it is shut down and a failure is flagged.

### 3.4.3 BBU STATE OF HEALTH CHECK

The BBU will determine internally with a random logic if it needs to be tested, and requests with the BAT\_SOH\_CHK signal a test discharge.

The power modules in the shelf decide based on their own and the other modules state, if they can do such a discharge. A state of health test discharge is only done if:

- All 3 PSUs and BBUs are installed and communication is available
- No other BBUs self-check is ongoing
- No PSUs or BBUs failed
- No BBU being charged at the moment
- All PSUs in AC operation
- PSU load is >500 W for at least 1 consecutive minute

The BBU will determine if the test was valid and decide if it has reached the end of life and set the BAT\_EOL signal if required.



### 3.5 PROTECTION

There are various protection features implemented in the unit, which will help to protect the unit, BBU and system and flag the failure. The bit position of the flagged error through the RS485 communication can be found in the communication manual BCA.00072 and is referenced here as "StatusBitName"."FlagName".

|                                 | RS485 FLAG              | PROTECTION                                                  | PARAMETER / DESCRIPTION                                 | MIN  | NOM   | MAX  | UNIT |
|---------------------------------|-------------------------|-------------------------------------------------------------|---------------------------------------------------------|------|-------|------|------|
| AC Input                        |                         |                                                             |                                                         |      |       |      |      |
| F                               | PFC.AC_FUSE_FAIL        | Input fuse (L)                                              | Not user accessible, fast                               |      | 25    |      | А    |
| V <sub>iac off</sub>            |                         |                                                             | AC UV Threshold                                         |      | See   | 3.2  |      |
| Viac on                         | PFC.UVP_ERROR           | AC Input Under<br>Voltage Protection                        | AC UV Reset Threshold                                   |      | See   | 3.2  |      |
| t <sub>Vac UV</sub> sw          |                         |                                                             |                                                         |      | 5     |      | ms   |
| DC Input                        |                         |                                                             |                                                         |      |       |      |      |
| $V_{\text{idc OV SW}}$          | CF.BATT_OVP_ERROR       | Over Voltage VBAT<br>Protection                             |                                                         |      | 56    |      | VDC  |
| Vidc UV SW                      | CF.BATT UVP ERROR       | Under Voltage VBAT                                          | Software UV Threshold                                   |      | 31.85 |      | VDC  |
| Vidc UV HW                      | CF.BATT_OVF_ENNON       | Protection                                                  | Hardware UV Threshold                                   | -    | 28    | -    | VDC  |
|                                 | BBU.BATTERY_PROTECTION  |                                                             | See BBU datasheet                                       |      |       |      |      |
|                                 | BBU.BATTERY_SLEEP       |                                                             | See BBU datasheet                                       |      |       |      |      |
|                                 | BBU.BATTERY_STOP_DCRG   |                                                             | See BBU datasheet                                       |      |       |      |      |
|                                 | BBU.BATTERY_END_OF_LIFE |                                                             | See BBU datasheet                                       |      |       |      |      |
|                                 | BBU.BATTERY_FAILURE     |                                                             | See BBU datasheet                                       |      |       |      |      |
| Main Output                     | V1 (12.6 V)             |                                                             |                                                         |      |       |      |      |
| V <sub>1 OV HW</sub>            |                         | Fast Over Voltage V1                                        | Fast OV Threshold V1                                    | 14.2 | 14.6  | 15.3 | VDC  |
| t <sub>V1 OV HW</sub>           | LLC.OVP_HW_ERROR        | Protection, Latch-Off<br>Type                               | Time from OV applied to Latch-Off                       |      |       | 1    | ms   |
| IV1 CL REG                      | No Flag                 | Regulation Current<br>Limitation, Constant-<br>Current Type | Maximum regulated current                               |      | 286   |      | ADC  |
| Iv1 oc sw                       |                         | Over Current                                                | Slow OC Limit V <sub>7</sub>                            | 274  | 280   | 294  | ADC  |
| tv1 OC SW latch                 | MISC.12V_OCP_ERROR      | Limitation, Latch-Off<br>Type                               | Time from OC detected to Latch-<br>Off                  |      | 2     |      | s    |
| Iv1 oc HW                       |                         | Fast Over Current                                           | Fast OC Limit                                           |      | 350   |      | ADC  |
| $t_{V1 \; OC \; HW \; restart}$ | No Flag                 | Limitation, Shut-down<br>Type                               | Time from OC detected to Restart                        |      | 4     |      | ms   |
| V1 UV                           |                         | Under Voltage V <sub>1</sub>                                | UV Threshold V1                                         |      | 10    |      | V    |
| tv1 UV trip                     | MISC.12V_UVP_ERROR      | Protection, Latch-Off<br>Type                               | Time from UV applied to Latch-Off                       |      | 2     |      | s    |
|                                 | LLC.ARCING_ERROR        | Arcing protection                                           | Repeated short overload on the<br>main output           |      |       |      |      |
|                                 | LLC:HOLD_UP_ERROR       | Hold-up error                                               | If V1 <8V and frequency below<br>min. level             |      | 10    |      | ms   |
|                                 | LLC.DCDC_ERROR          | General V1 converter<br>error                               |                                                         |      |       |      |      |
| Auxiliary Out                   | out VAUX (54 V)         |                                                             |                                                         |      |       |      |      |
| VAUX OV SW                      |                         | Slow Over Voltage                                           | Slow OV Threshold VAUX                                  |      | 56    |      | VDC  |
| t <sub>VAUX OV SW</sub>         | AUX.SW_OVP_ERROR        | V <sub>AUX</sub> Protection,<br>Latch-Off Type              | Time from OV applied to Latch-Off                       |      | 5     |      | ms   |
| Vaux ov hw                      |                         | Fast Over Voltage                                           | Fast OV Threshold VAUX                                  | 58.5 | 59    | 59.5 | VDC  |
| tvaux ov hw                     | AUX.HW_OVP_ERROR        | V <sub>AUX</sub> Protection,<br>Latch-Off Type              | Time from OV applied to Latch-Off                       |      |       | 1    | ms   |
| IVAUX CL REG                    | No Flag                 | Current regulation<br>max $V_{AUX}$                         | Regulation Current Limitation,<br>Constant-Current Type |      | 6.4   |      | ADC  |
| VAUX UV                         |                         | HUA VAUA                                                    | UV Threshold $V_{AUX}$                                  |      | 40    |      | V    |
| tvaux uv trip                   |                         | Under Voltage VAUX                                          | Time from Under Voltage applied                         |      | 10    |      | ms   |
| LVAUX UV trip                   | AUX_SW_UVP_ERROR        | Protection, Latch-Off                                       | to Shut-down<br>Time from Under Voltage applied         |      |       |      | 113  |
| $t_{\text{VAUX UV restart}}$    |                         | Туре                                                        | to Restart                                              |      | 3     |      | s    |
| $t_{\text{VAUX UV latch}}$      |                         |                                                             | Time from Restart to Latch-Off                          |      | 2     |      | s    |
|                                 |                         |                                                             |                                                         |      |       |      |      |



 Asia-Pacific
 Europe, N

 +86 755 298 85888
 +353

Europe, Middle East +353 61 225 977 North America +1 408 785 5200

BCD.00343\_010

| Pottom Chara                | er Output VBC (52.5 V) |                                                         |                                                         |       |     |       |     |
|-----------------------------|------------------------|---------------------------------------------------------|---------------------------------------------------------|-------|-----|-------|-----|
|                             |                        | Olaw Orean)/altara                                      |                                                         |       |     |       |     |
| V <sub>BC</sub> ov sw       | BC.SW OVP ERROR        | Slow Over Voltage<br>V <sub>BC</sub> Protection, Latch- | Slow OV Threshold VBC                                   |       | 54  |       | VDC |
| t <sub>VBC OV SW</sub>      | Be.SW_OVF_ERROR        | Off Type                                                | Time from OV applied to Latch-Off                       |       | 5   |       | ms  |
| V <sub>BC OV HW</sub>       | BC.HW OVP ERROR        | Fast Over Voltage VBC<br>Protection, Latch-Off          | Fast OV Threshold VBC                                   | 56.5  | 57  | 57.5  | VDC |
| tvbc ov hw                  | BC.HW_OVF_ENNON        | Type                                                    | Time from OV applied to Latch-Off                       |       |     | 1     | ms  |
| IVBC CL REG                 | No Flag                | Current regulation max VBC                              | Regulation Current Limitation,<br>Constant-Current Type |       | 5   |       | ADC |
| V <sub>BC UV</sub>          |                        | Under Voltage VBC                                       | UV Threshold VBC                                        |       | 13  |       | V   |
| tvBC UV trip                | BC.SW_UVP_ERROR        | Protection, Shut-<br>down Type                          | Time from UV applied to Shut-<br>down                   |       | 10  |       | ms  |
| tvBC UV restart             |                        | down type                                               | Time from UV applied to Restart                         |       | 4.2 |       | S   |
| $V_{\text{BC}}$ out of reg  |                        | Out of regulation $V_{BC}$ If $I_{BC} < 300$ mA and     | Regulation Limits                                       | 51.45 |     | 53.55 | V   |
| $t_{\text{VBC out of reg}}$ | BC.V_OUT_ERROR         | outside these limits,<br>Latch-Off Type                 | Time from out of regulation<br>detected to Latch-Off    |       | 2   |       | s   |
| t <sub>VBC timeout</sub>    | BC.TIMEOUT_ERROR       | Timeout error, Latch-<br>Off Type                       | Time from Battery Charger started to Latch-Off          |       | 5   |       | h   |
| Other Protect               | ions                   |                                                         |                                                         |       |     |       |     |
|                             | TEMP.***_ERROR         | OTP, Latch-Off Type                                     | Over Temperature protection:<br>See also section 3.8.2  |       |     |       |     |
|                             | FAN.RPM_ERROR          | Fan Error, Latch-Off<br>Type                            | Fan speed error:<br>see also section 3.8.2              |       |     |       |     |
|                             | COM.F*_FW_ERROR        | FW Error                                                | Wrong / mismatching Firmware<br>programmed on PSU       |       |     |       |     |
|                             | COM.F*_COM_ERROR       | Communication error                                     | F1-F3 fatal internal communication<br>error             |       |     |       |     |
|                             | COM.CAN_COM_ERROR      | Communication error                                     | CAN communication problem in<br>the shelf               |       |     |       |     |
|                             |                        |                                                         |                                                         |       |     |       |     |

### 3.5.1 LATCH-OFF AND CLEARING

If an error on the main 12.6 V output occurs which is latching off this converter, it will also shut down and latch the auxiliary and battery charger converter.

If the auxiliary or the battery charger converter fail with a latching error, they will not shut down any of the other converters.

The latching faults can be cleared/unlocked by disconnecting the supply from the AC mains for >2 s with a shutdown of the main output (not going into backup mode), or by toggling the PS\_KILL input.

### 3.5.2 INPUT FUSE

Fast-acting 25 A input fuse ( $6.3 \times 32 \text{ mm}$ ) in series with the L-line inside the power supply protects against severe defects. The fuse is not accessible from the outside and is therefore not a serviceable part.

### 3.5.3 AC INPUT UNDER-VOLTAGE

If the sinusoidal input voltage stays below the input undervoltage lockout threshold  $V_{i \text{ on}}$  or falls below  $V_{i \text{ off}}$  during operation, the supply will be inhibited. Once the input voltage returns within the normal operating range, the supply will return to normal operation again.

If a good battery back-up unit is present, the unit can keep on operating for up to 90 s in case of AC outage. More details see in Section 3.4.

### 3.5.4 DC INPUT UNDER-VOLTAGE

There are several protection levels for the DC input under voltage. The BBU module will begin to protect itself at 33.8 V. Below this level, the PSU will protect at the Software under voltage threshold of 31.85 V, and this undervoltage is ignored during the first 15 seconds of backup to account for temporary dips during current ramp up. Finally, below this level is the hardware under voltage at 28 V.



#### **OVERVOLTAGE PROTECTION** 3.5.5

The SPAFCBK-11G front-end provides a fixed threshold overvoltage (OV) protection implemented with a HW comparator for the main, the auxiliary and the battery charger output.

Once an OV condition has been triggered, the supply will shut down the converter.

The auxiliary and battery charger output have in addition to the HW overvoltage protection a software overvoltage detection implemented.

#### **UNDERVOLTAGE DETECTION** 3.5.6

All three outputs have a software under voltage protection implemented.

If the main output voltage falls below the under voltage level  $V_{1 UV}$  for a time >  $t_{V1 UV}$  trip it will latch-off.

If the auxiliary output falls below the under voltage limit VAUX UV for a time > tVAUX UV trip the control circuit will attempt to restart the converter, if voltage is not restored before tvAUX UV latch the output will latch-off.

If the battery charger falls below the under voltage limit V<sub>BC UV</sub> for a time > tv<sub>BC UV</sub> trip the control circuit will attempt to restart the converter, and remain on indefinitely.

#### 3.5.7 **OUT OF REGULATION DETECTION BATTERY CHARGER**

If the battery charger current is less than 300 mA (which indicates the battery is nearly charged), the voltage is monitored to stay inside the regulation bandwidth. If the voltage is outside this band for more than tVBC out of reg the control circuit will shut down the battery charger output and latch off.

#### 3.5.8 **CURRENT LIMITATION**

### **Main Output**

The main output exhibits a substantially rectangular output characteristic controlled by a software feedback loop. If the output current exceeds IV1 CL REG it will reduce the output voltage in order to keep the output current constant. If the output current is higher than Iv1 oc sw for more than tv1 oc sw latch the output will latch off.

A second current limitation implemented as a fast hardware detection circuit will immediately switch off the main output if the output current increases beyond the peak current trip point, occurring mainly if a short circuit is applied to the output voltage. The supply will re-start after tv1 OC HW restart with a soft start.

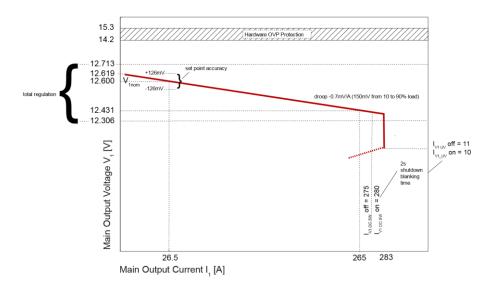



Figure 15. Current Limitation on V<sub>1</sub>



Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

North America +1 408 785 5200

BCD.00343\_010

### **Auxiliary Output**

The auxiliary output exhibits a substantially rectangular output characteristic, controlled by a hardware feedback loop. If the output current exceeds  $I_{VAUX \ CL \ REG}$  it will reduce the output voltage in order to keep the output current constant.

Running in current limitation causes the output voltage to fall, this will trigger the under voltage protection, see also <u>Undervoltage Detection</u>.

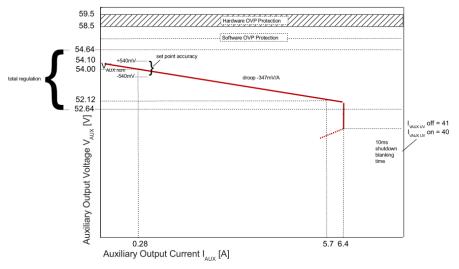
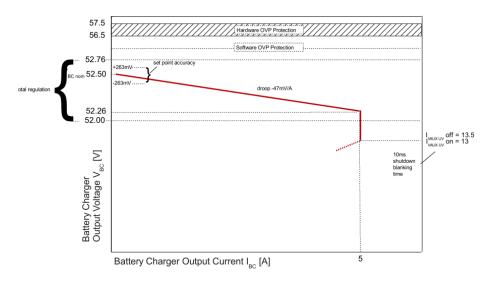




Figure 16. Current Limitation on Vaux

### **Battery Charger Output**

The battery charger output exhibits a substantially rectangular output characteristic, controlled by a hardware feedback loop. If the output current exceeds  $I_{VBC \ CL \ REG}$  it will reduce the output voltage in order to keep the output current constant.

Running in current limitation causes the output voltage to fall, this will trigger the under voltage protection, see also <u>Undervoltage Detection</u>.





### Figure 17. Current Limitation on Vbc

#### 3.6 **MONITORING**

1

The power supply operating parameters can be accessed through the RS485 interface. For more details refer to document BCA.00072 (SPAFCBK-11G RS485 Communication Manual)

| PARAME               | TER                                   | DESCRIPTION / CONDITION                                     | MIN NC | M MAX | UNIT |
|----------------------|---------------------------------------|-------------------------------------------------------------|--------|-------|------|
| Viac mon             | AC Input RMS Voltage                  | $V_{iac} MIN \le V_{iac} \le V_{iac} MAX$                   | -2     | +2    | VAC  |
| liac mon             | AC Input RMS Current                  | l <sub>iac</sub> > 5 Arms                                   | -5     | +5    | %    |
| hac mon              | Ao input nino ourient                 | l <sub>iac</sub> ≤ 5 Arms                                   | -0.25  | +0.25 | Arms |
| Piac mon             | AC True Input Power                   | $P_{iac} > 900 W$                                           | -5     | +5    | %    |
| I lac mon            | Ao True Input Power                   | P <sub>iac</sub> < 900 W                                    | -45    | +45   | W    |
| Vidc mon             | DC Input Voltage                      | $V_{idc} \text{ MIN} \leq V_{idc} \leq V_{idc} \text{ MAX}$ | -2     | +2    | VAC  |
| V <sub>bat mon</sub> | Battery Sense Voltage                 | $V_{idc} MIN \le V_{bat} \le V_{idc} MAX$                   | -0.5   | +0.5  | %    |
| ь.                   | I <sub>idc mon</sub> DC Input Current | $I_{idc} > 40A$                                             | -8     | +8    | %    |
| Idc mon              |                                       | l <sub>idc</sub> ≤ 40A                                      | -3.2   | +3.2  | Arms |
| V <sub>1 mon</sub>   | V1 Voltage                            | $V_1 MIN \le V_1 \le V_1 MAX$                               | -1     | +1    | %    |
| I <sub>1 mon</sub>   | V1 Current                            |                                                             | -2.65  | +2.65 | ADC  |
| V <sub>AUX</sub> mon | V <sub>AUX</sub> Voltage              | $V_{AUX} MIN \le V_{AUX} \le V_{AUX} MAX$                   | -1     | +1    | %    |
| IAUX mon             | VAUX Current                          | I <sub>AUX</sub> > 2 A                                      | -6     | +6    | %    |
| AUX mon              | VAUX Ourrent                          | I <sub>AUX</sub> ≤ 2 A                                      | -0.12  | +0.12 | А    |
| $V_{BC \ mon}$       | V <sub>BC</sub> Voltage               | I <sub>BC mon</sub> ≤ 1A <sup>1</sup>                       | -0.5   | +0.5  | %    |
| IBC mon              | I <sub>BC</sub> Current               | I <sub>BC</sub> > 2 A                                       | -5     | +5    | %    |
| IBC mon              | IBC Ourient                           | $I_{BC} \leq 2 A$                                           | -0.1   | +0.1  | А    |
| Po mon               | Total Output Power                    | Pi > 900 W                                                  | -3     | +3    | %    |
| r o mon              | Total Output Fower                    | Pi < 900 W                                                  | -27    | +27   | W    |
| TInput mon           | Inlet Temperature                     | AC operation, $T_A MIN \le T_A \le T_A MAX$                 | -5     | +7    | °C   |
|                      |                                       |                                                             |        |       |      |

The voltage measurement is before the Or-ing and does therefore not include the passive droop on the Or-ing and the PCB. Therefore, the readback is valid for the external voltage only valid for low current.



Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

**North America** 

+1 408 785 5200 BCD.00343\_010

## 3.7 SIGNALLING AND CONTROL

# 3.7.1 OVERVIEW

| PARAMETER                      | DESCRIPTION / CONDITION                                                                                                   | CRITERION                                                                                                                                                                                                                                  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Signals from Shelf       | Description / Condition                                                                                                   | Chirehion                                                                                                                                                                                                                                  |
|                                | To flag the PSU if it is inserted in the shelf                                                                            |                                                                                                                                                                                                                                            |
| PS_KILL                        | Recessed pin (last make / first break)                                                                                    | Pulled to the ground inside the Shelf                                                                                                                                                                                                      |
| ADD12                          | Address pins for RS485 PSU address for the location of the PSU in the shelf;                                              | Hard wired in the shelf.<br>See also section SIGNALLING AND<br>CONTROL5.4 and 3.8.1 and<br>Communication Manual BCA.00072                                                                                                                  |
| ADD35                          | Address pins for RS485 PSU address for the location<br>of the shelf inside the rack;<br>Referred to RS485 isolated ground | Set by the user via a shelf input connector.<br>See also section 5.4 and communication<br>manual BCA.00072                                                                                                                                 |
| Input Signals from BBU         |                                                                                                                           |                                                                                                                                                                                                                                            |
| BAT_FAIL                       | Signal flagging a BBU failure                                                                                             |                                                                                                                                                                                                                                            |
| BAT_STOP_DCRG                  | Signal commanding to stop discharging the Battery                                                                         |                                                                                                                                                                                                                                            |
| BAT_SLEEP                      | Signal flagging missing 12 V in the BBU                                                                                   |                                                                                                                                                                                                                                            |
| BAT_EOL                        | Battery End of Life signal                                                                                                |                                                                                                                                                                                                                                            |
| BAT_PROT                       | Battery protection signal to HW shut down current feed circuit                                                            |                                                                                                                                                                                                                                            |
| BAT_SOH_CHK                    | Battery requesting state of health check                                                                                  |                                                                                                                                                                                                                                            |
| BAT_CRG_EN                     | Battery charger enable signal                                                                                             |                                                                                                                                                                                                                                            |
| BAT_KILL                       | To flag the PSU if a BBU is present in the shelf<br>Recessed pin (last make / first break)                                | Pulled to the ground inside the BBU                                                                                                                                                                                                        |
| BAT_VSENSE /<br>BAT_VSENSE_R   | Battery voltage sense signals                                                                                             |                                                                                                                                                                                                                                            |
| Output Signals to Shelf        |                                                                                                                           |                                                                                                                                                                                                                                            |
| PWR_FAIL                       | Signal to flag potential loss of power due to backup<br>timeout;<br>Active low, normally high open collector signal       | This signal is pulled low if the PSU is 45 s in<br>backup and AC is not yet returned<br>See also section 3.4                                                                                                                               |
| RED_LOST                       | Signal to flag loss of redundancy;<br>Active low, normally high open collector signal                                     | This signal is pulled low if at least one PSU<br>or BBU in the shelf has failed, is not<br>operational or is not present.<br>The signal is <u>not</u> pulled low in case of a<br>BAT_PROT or BAT_STOP_DCRG event.<br>See also section 5.4. |
| Bidirectional Signals to Shelf |                                                                                                                           |                                                                                                                                                                                                                                            |
| SYNC1-3                        | Reserved to synchronize PSU turn-on, turn-off and transition                                                              | See also section 5.4.                                                                                                                                                                                                                      |
| ISHARE                         | Current share line                                                                                                        | See also section 5.4.                                                                                                                                                                                                                      |
| RS485_D / RS485_DN             | RS485 communication lines for monitoring of all<br>PSUs;<br>Isolated from other outputs                                   | See also 3.8.1.                                                                                                                                                                                                                            |
| CAN_H / CAN_L                  | CAN communication lines for inter- PSU communication in the shelf                                                         |                                                                                                                                                                                                                                            |
| Output Signals to BBU          |                                                                                                                           |                                                                                                                                                                                                                                            |
| BAT_NSRT                       | To flag the BBU if a PSU is present in the shelf<br>Recessed pin (last make / first break)                                | Pulled to the signal ground inside the PSU                                                                                                                                                                                                 |
| Bidirectional Signals to Shelf |                                                                                                                           |                                                                                                                                                                                                                                            |
| BAT_I2C_SDA/<br>BAT_I2C_SCL    | I2C communication to the BBU                                                                                              |                                                                                                                                                                                                                                            |



## 3.7.2 ELECTRICAL CHARACTERISTICS

| PARAM<br><i>PS_KILL</i> | ETER                                                                        | <b>DESCRIPTION / CONDITION</b>    | MIN         | NOM      | MAX   |      |
|-------------------------|-----------------------------------------------------------------------------|-----------------------------------|-------------|----------|-------|------|
| PS_KILL                 |                                                                             |                                   |             |          | INIAA | UNIT |
|                         | . / BAT_KILL input                                                          |                                   |             |          |       |      |
| VIL                     | Input Low Level Voltage                                                     | PSU / BBU is inserted             | -0.2        |          | 0.8   | V    |
| VIH                     | Input High Level Voltage                                                    | PSU / BBU is removed              | 2.2         |          | 3.5   | V    |
| I <sub>IL,H</sub>       | Maximum Input Sink or Source Current                                        | $V_{1}$ = -0.2 V to +3.5 V        | -1          |          | 1     | mA   |
| Rpull up                | Internal Pull up Resistor to internal 3.3 V                                 |                                   |             | 10       |       | kΩ   |
| R <sub>LOW</sub>        | Maximum external Pull down<br>Resistance to GND to obtain Low Level         |                                   |             |          | 1     | kΩ   |
| Rhigh                   | Minimum external Pull down Resistance<br>to GND to obtain High Level        |                                   | 50          |          |       | kΩ   |
| ADD1                    | 5 inputs                                                                    |                                   |             |          |       |      |
| VIL                     | Input Low Level Voltage                                                     |                                   | -0.2        |          | 0.8   | V    |
| VIH                     | Input High Level Voltage                                                    |                                   | 2.2         |          | 3.5   | V    |
| I <sub>IL,H</sub>       | Maximum Input Sink or Source Current                                        | $V_{1}$ = -0.2 V to +3.5 V        | -1          |          | 1     | mA   |
| Rpull up                | Internal Pull up Resistor to internal 3.3V                                  |                                   |             | 10       |       | kΩ   |
| R <sub>LOW</sub>        | Maximum external Pull down<br>Resistance to GND to obtain Low Level         |                                   |             |          | 1     | kΩ   |
|                         | Minimum external Pull down Resistance<br>to GND to obtain High Level        |                                   | 50          |          |       | kΩ   |
| BAT_FA                  | IL / BAT_STOP_DCRG / BAT_SLEEP / BA                                         | AT_EOL / BAT_PROT / BAT_SOH_CHK / | 'BAT_CRG_EI | N inputs |       |      |
| VIL                     | Input Low Level Voltage                                                     |                                   | -0.2        |          | 0.8   | V    |
| VIH                     | Input High Level Voltage                                                    |                                   | 2.2         |          | 3.5   | V    |
| I <sub>IL,H</sub>       | Maximum Input Sink or Source Current                                        | V⁄i = −0.2 V to +3.5 V            | -1          |          | 1     | mA   |
| R <sub>pull up</sub>    | Internal Pull up Resistor to internal 3.3 V                                 |                                   |             | 10       |       | kΩ   |
| RLOW                    | Maximum external Pull down<br>Resistance to GND to obtain Low Level         |                                   |             |          | 1     | kΩ   |
| Rhigh                   | Minimum external Pull down Resistance to GND to obtain High Level           |                                   | 50          |          |       | kΩ   |
| PWR_FA                  | NL / RED_LOST outputs                                                       |                                   |             |          |       |      |
| Vol                     | Output Low Level Voltage                                                    | I <sub>lsink</sub> < 4 mA         | -0.2        |          | 0.4   | V    |
| V <sub>pull up</sub>    | External pull-up voltage                                                    |                                   |             |          | 20    | V    |
| Rpull up                | Recommended external pullup resistor at $V_{\text{pull up}} = 12 \text{ V}$ |                                   |             | 10       |       | kΩ   |
| lo                      | Maximum Sink Current                                                        | <i>V</i> <sub>0</sub> < 0.4 V     |             |          | 4     | mA   |

Table 1. Signal Electrical Characteristics

## 3.7.3 INPUT / OUTPUT SIGNAL PROTECTION

All digital input signals (all but BAT\_VSENSE(\_R)) have inside the PSU protection diodes added which limit the voltage to the ground on the lower side and to the internal 3.3 V on the higher side. The PWR\_FAIL and RED\_LOST output signals have inside the PSU 15 V Zener diodes added versus ground.

### 3.7.4 BATTERY VOLTAGE SENSE INPUTS BAT\_VSENSE(\_R)

The BBU provide sense lines to more accurate monitor the battery voltage excluding the voltage drop on load wires in both positive and negative path.



 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 225 977
 +1 408 785 5200

### 3.7.5 CURRENT SHARE ISHARE

The SPAFCBK-11G front-end has an active current share scheme implemented for V1. All the ISHARE current share pins need to be interconnected in order to activate the sharing function. If a supply has an internal fault or is not turned on, it will disconnect its ISHARE pin from the share bus. This will prevent dragging the output down (or up) in such cases.

The current share function uses a digital bi-directional data exchange on a recessive bus configuration to transmit and receive current share information. The controller implements a Master/Slave current share function. The power supply providing the largest current among the group is automatically the Master. The other supplies will operate as Slaves and increase their output current to a value close to the Master by slightly increasing their output voltage. The voltage increase is limited to +250 mV.

The Auxiliary output uses a passive current share method (droop output voltage characteristic).

### 3.7.6 PS\_KILL INPUT

PSKILL input is an active-low recessed pin in the connector and is used to shut down the circuits as soon as the power supply is being pulled out. This pin is connected to ground in the power shelf.

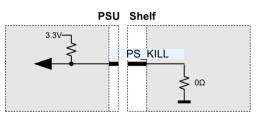



Figure 18. PS\_KILL connection

### 3.7.7 BAT\_KILL INPUT

PSKILL input is an active-low recessed pin in the connector and is used to shut down the circuits as soon as the power supply is being pulled out. This pin is connected to ground in the power shelf.

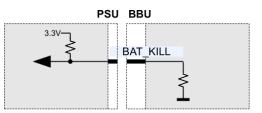



Figure 19. BAT\_KILL connection

### 3.7.8 BAT\_NSRT OUTPUT

The BAT\_NSRT output is wired inside the PSU to ground. This is a recessed pin and does indicate that there is a power supply present.

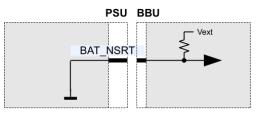



Figure 20. BAT\_NSRT connection



#### 3.7.9 **PWR\_FAIL OUTPUT**

The PWR\_FAIL signal indicates that the power supply is in risk of losing the output power in backup mode. It is pulled low after 45s in backup operation if AC is not returned. It is an open collector signal which needs to be pulled up to an external voltage. (See limits in Table 1.)

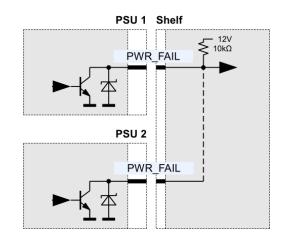



Figure 21. PWR\_FAIL connection

### 3.7.10 RED\_LOST OUTPUT

The RED\_LOST signal indicates that the shelf is not operating in redundancy anymore. It is pulled low if at least one PSU or BBU in the shelf is failed, not operational or not present. The signal is not pulled low in case of a BAT\_PROT or BAT\_STOP\_DCRG event.

It is an open collector signal which needs to be pulled up to an external voltage. (See limits in Table 1.)

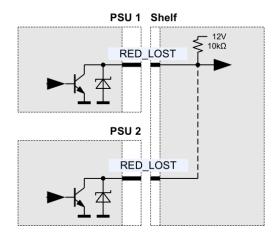
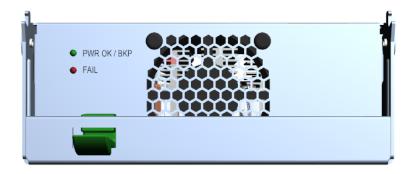



Figure 22. RED\_LOST connection



Asia-Pacific Europe, Middle East +86 755 298 85888


+353 61 225 977

**North America** 

+1 408 785 5200 BCD.00343\_010

### 3.7.11 LED INDICATOR

The power module has two front LEDs showing the status of the supply. The LED PWR OK / BKP LED is bi-colored: green and amber, and indicates AC and DC power presence. The red FAIL LED indicates warning or fault conditions. *Table 2* lists the different LED status.



| LED                  | LED STATUS         | CONDITION                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Off                | Unit is off or 12.6 VDC output is out of regulation.                                                                                                                                                                                                                                                                                                                                                    |
|                      | Amber solid        | When a valid AC input is applied, 12.6 VDC output is in regulation,<br>and BBU is not installed or not ready for use. OFF otherwise                                                                                                                                                                                                                                                                     |
| PWR OK LED / BKP LED | Green solid        | When a valid AC input is applied, 12.6Vdc output is in regulation, and a BBU is installed and ready for use. OFF otherwise                                                                                                                                                                                                                                                                              |
|                      | Amber/Off blinking | During backup phase (90 second timeout).                                                                                                                                                                                                                                                                                                                                                                |
|                      | Green/Off blinking | FW upgrade in progress                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | Off                |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |                    | General power module failure (FAN failure is included. OFF otherwise<br>If the 54Vdc auxiliary or the BBU step-up or step-down battery<br>charger converter fails, the Red LED will turn on and the Fail signal will<br>be latched but the main converter (LLC) will still provide 12.6Vdc to<br>the busbars.                                                                                           |
| FAIL                 | Red solid          | <ul> <li>General power supply failure</li> <li>The output 12V before the OR-ing MOS goes out of regulation</li> <li>Fan failure or fan low speeds (5 sec delay on persistency)</li> <li>Over current protection (2 sec delay on persistency)</li> <li>Over temperature protection (2 sec delay on persistency)</li> <li>Over voltage protection</li> <li>AC fuse failure (5 to 30 sec delay)</li> </ul> |

Table 2. LED Status Indication



#### 3.8 COMMUNICATION

#### **RS485 / MODBUS COMMUNICATION** 3.8.1

The SPAFCBK-11G front-end is a communication slave device only; it never initiates messages on the RS485/MODBUS by itself. Communication to the MCU will be possible as long as the input AC voltage is provided and above Von bias.

For more information about the communication, see Communication Manual BCA.00072.

#### 3.8.2 **TEMPERATURE AND FAN CONTROL**

To achieve best cooling results sufficient airflow through the supply must be ensured. Do not block or obstruct the airflow at the rear of the supply by placing large objects directly at the output connector. The SPAFCBK-11G is provided with a front to rear airflow, which means the air enters through the front panel of the supply and leaves at the connector side. The SPAFCBK-11G supply has been designed for horizontal operation. The fan inside of the supply is controlled by a microprocessor. The RPM of the fan is adjusted to ensure optimal supply cooling and is a function of the inlet, outlet and critical component temperatures. There is no direct dependency on the delivered power.

The SPAFCBK-11G provides access via RS485 to the measured temperatures of in total 8 sensors within the power supply, see Table 3. The microprocessor is monitoring these temperatures and increases the fan speed based on those. If a critical level is reached, the temperature warning bit is set. If temperatures continue to rise above the shut down threshold all outputs will be disabled. At the same time the warning or fault condition is signaled accordingly by a LED (see LED signaling in Table 2).

| TEMPERATURE<br>SENSOR            | DESCRIPTION / CONDITION                                                    | RESTART<br>THRESHOLD | WARNING<br>THRESHOLD | SHUT DOWN<br>THRESHOLD |
|----------------------------------|----------------------------------------------------------------------------|----------------------|----------------------|------------------------|
| Inlet air temperature            | Sensor located on main board close to front panel<br>of power supply       | 50 °C                | 55 °C                | 60 °C                  |
| Outlet air temperature           | Sensor located on main board close to connector<br>end of the power supply | 100 °C               | 105 °C               | 110 °C                 |
| PFC heat sink                    | Sensor located close to the PFC heat sink                                  | 100 °C               | 105 °C               | 110 °C                 |
| V <sub>1</sub> primary heat sink | Sensor located close to one of the V <sub>1</sub> primary heat sinks       | 95 °C                | 100 °C               | 105 °C                 |
| И synchronous rectifier          | Sensor located close to $V_1$ synchronous rectifier devices                | 110 °C               | 115 °C               | 120 °C                 |
| V1 OR-ing elements               | Sensor located close to 1/1 OR-ing devices                                 | 110 °C               | 115 °C               | 120 °C                 |
| $V_{BC}$ secondary heat sink     | Sensor located close to $\mathcal{V}_{\!B\!C}$ secondary heat sink         | 95 °C                | 100 °C               | 105 °C                 |
| Current feed heat sink           | Sensor located close to current feed heat sink                             | 110 °C               | 115 °C               | 120 °C                 |

Table 3. Temperature sensor location and thresholds

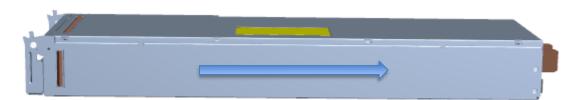



Figure 23. Airflow direction PSU



Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

North America

+1 408 785 5200 BCD.00343\_010

## 3.9 ELECTROMAGNETIC COMPATIBILITY

## 3.9.1 IMMUNITY

| PARAMETER             | DESCRIPTION / CONDITION                                                                                    | CRITERION |
|-----------------------|------------------------------------------------------------------------------------------------------------|-----------|
| ESD Contact Discharge | IEC / EN 61000-4-2, ±8 kV                                                                                  | A         |
| ESD Air Discharge     | IEC / EN 61000-4-2, ±15 kV                                                                                 | А         |
| EFT / Burst           | IEC / EN 61000-4-4, Level 4                                                                                | А         |
| Surge                 | IEC / EN 61000-4-5<br>Differential Mode 2 kV (Line to Neutral)<br>Common Mode 4 kV (Line/Neutral to Earth) | А         |

## 3.9.2 EMISSION

| PARAMETER                  | DESCRIPTION / CONDITION                                           | CRITERION |
|----------------------------|-------------------------------------------------------------------|-----------|
| Conducted Emission         | FCC Part 15 / EN 55022/ CISPR 22                                  | Class B   |
| Radiated Emission          | FCC Part 15 / EN 55022/ CISPR 22                                  | Class B   |
| Harmonic Current Emissions | IEC 61000-3-2<br>Vi = 277 VAC / 60 Hz & 230 VAC / 50Hz, 100% load | Class A   |

## 3.10 SAFETY / APPROVALS

Maximum electric strength testing is performed in the factory according to IEC/EN 60950 and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests.

| PARAMETER                           | DESCRIPTION / CONDITION                                                                                                                                                                                                                     | NOTE                                                    |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Agency Approvals                    | UL 60950-1 2 <sup>nd</sup> Edition<br>CAN/CSA-C22.2 No. 60950-1-07 2 <sup>nd</sup> Edition<br>IEC 60950-1: 2005<br>EN 60950-1: 2006<br>cCSAus<br>CE Mark<br>CB Report & Certificate<br>EU Low Voltage Directive<br>EMC Directive<br>UL94V-0 | Approved by independent<br>body<br>(see CE declaration) |
|                                     | AC Primary to any Secondary (3000 VAC)                                                                                                                                                                                                      | Reinforced                                              |
|                                     | AC Primary to Chassis GND (1500 VAC / 2121 VDC)                                                                                                                                                                                             | Basic                                                   |
| Insulation Strength                 | Secondary to Chassis GND (100 VDC)                                                                                                                                                                                                          | Functional                                              |
|                                     | RS485 Communication to AC Primary, Secondary and Chassis GND (500 VDC)                                                                                                                                                                      | Functional                                              |
| Creepage / Clearance                | Primary (L/N) to chassis (PE)                                                                                                                                                                                                               | According to safety standards                           |
| Greepage / Glearance                | AC Primary to secondary                                                                                                                                                                                                                     | According to safety standards                           |
|                                     | AC Primary $\Leftrightarrow$ Chassis GND, Secondary and RS485                                                                                                                                                                               | 2121 VDC                                                |
| Draduction Electrical Strongth Test | Secondary and RS485 $\Leftrightarrow$ AC Primary and Chassis GND                                                                                                                                                                            | 100 VDC                                                 |
| Production Electrical Strength Test | RS485 $\Leftrightarrow$ AC Primary, Chassis GND and Secondary                                                                                                                                                                               | 500 VDC                                                 |
|                                     | Ground Continuity Test                                                                                                                                                                                                                      | 35 A                                                    |



### 3.11 ENVIRONMENTAL

| DAE            | AMETER                           | DESCRIPTION / CONDITION                                                                  | MIN    | NOM | MAX           | UNIT    |
|----------------|----------------------------------|------------------------------------------------------------------------------------------|--------|-----|---------------|---------|
| PAF            |                                  | DESCRIPTION / CONDITION                                                                  | IVIIIN | NOM |               | UNIT    |
| T <sub>A</sub> | Ambient Operating<br>Temperature | Power Shelf is able to start at -15°C                                                    | -5     |     | +45           | °C      |
| Ts             | Storage Temperature              | Non-operational                                                                          | -40    |     | +70           | °C      |
|                | Transport. Temperature           | Short term storage                                                                       | -55    |     | +85           | °C      |
|                | Relative Humidity                | Operation and storage, non-condensing                                                    | 10     |     | 90            | %       |
|                | Altitude                         | Operational (no derating)                                                                | -      |     | 3000<br>10000 | M<br>Ft |
|                | Shock Operational                | half-sine 11 ms, 5 shocks, 3 axes                                                        |        |     | 6             | g       |
|                | Shock Non-Operational            | half-sine 11 ms, 10 shocks, 3 axes                                                       |        |     | 12            | g       |
|                | Vibration Operational            | 1.5 mm amplitude, 5 to 500 Hz, 10 sweeps at 1 octave / minute per each of the three axes |        |     | 0.5           | g       |
|                | Vibration Non-Operational        | 3 mm amplitude, 5 to 500 Hz, 10 sweeps at 1 octave / minute per each of the three axes   |        |     | 1.0           | g       |

## 3.12 RELIABILITY

| PARAMETER                      | DESCRIPTION / CONDITION                                                                 | MIN | NOM | MAX | UNIT |
|--------------------------------|-----------------------------------------------------------------------------------------|-----|-----|-----|------|
| MTBF Mean time between failure | Telcordia SR 332 issue 3, GB CL =90%, $T_A$ = 45°C, Vi = 277 VAC, 100% load without fan | 500 |     |     | kh   |

## 3.13 MECHANICAL

| PARAMETER | DESCRIPTION / CONDITION | MIN | NOM   | MAX | UNIT |
|-----------|-------------------------|-----|-------|-----|------|
|           | Width                   |     | 165   |     | mm   |
| Dimension | Height                  |     | 65    |     | mm   |
|           | Depth                   |     | 551.5 |     | mm   |
| Weight    |                         |     | 5.5   |     | kg   |

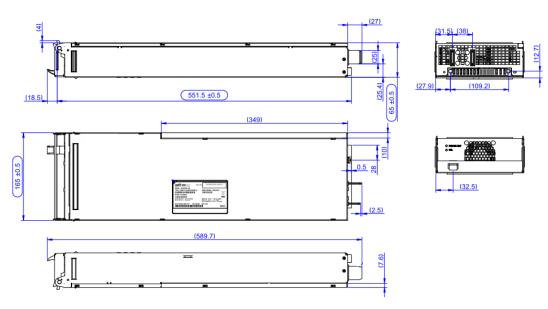



Figure 24. Mechanical Drawing

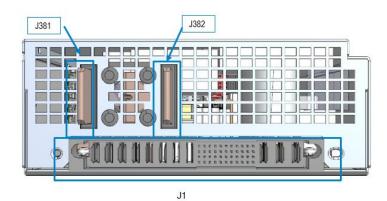


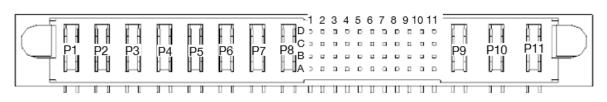
Asia-Pacific Eu +86 755 298 85888

Europe, Middle East +353 61 225 977 North America

25

+1 408 785 5200


© 2018 Bel Power Solutions


BCD.00343\_010

# 3.14 CONNECTORS



| APPLICATION                                  | DESCRIPTION                                                                            | MANIFACTURER<br>P/N                                                   | BEL POWER<br>SOLUTION P/N |
|----------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|
|                                              | Main output busbars<br>3 x 25 x 34 mm                                                  | -                                                                     | -                         |
| V1 Output busbar                             | Mating Part                                                                            | Тусо 1643903-3                                                        | ZES.01258                 |
| AC input, DC input,<br>Auxiliary and Battery | 8 Power + 44 Signals +<br>3Power AC pins, PwrBlade<br>Connector, Male 90° PCB<br>mount | FCI 51939-792LF                                                       | ZES.00478                 |
| Charger output, Signals                      | Mating Part                                                                            | FCI 10066440-361LF<br>(panel mount)<br>FCI 51915-417LF<br>(PCB mount) |                           |





NOTE: Pins P2-P5, P10, P11, D6, C6, B6, A6 are lagging (short pins)



| CONNECTOR | PIN                          | NAME          | DESCRIPTION                                 |
|-----------|------------------------------|---------------|---------------------------------------------|
| CONNECTON | Power Output                 |               |                                             |
| J381      | i onci ouipui                | V1            | +12 VDC main output                         |
| J382      |                              | GR1           | Power ground / 12 VDC return                |
| J1        | P1                           | AUX_54V_R     | 54 VDC auxiliary output return              |
| J1        | P2                           | AUX_54V       | +54 VDC auxiliary output                    |
| J1        | D4, C4, B4, D5, C5           | S_BC_52.5V    | 52.5 VDC battery charger                    |
| J1        | D4, 04, D4, D3, 03<br>D2, C2 | FAN_SUPPLY_R  | 12 VDC supply for BBU fan return            |
| J1        | D3, C3                       | FAN_SUPPLY    | +12 VDC supply for BBU fan                  |
| 01        | Power Input                  |               |                                             |
| J1        | P3, P4, P5                   | BAT           | DC input from BBU                           |
|           |                              |               | DC input from BBU return                    |
| J1        | P6, P7, P8                   | BAT_R         | 52.5 VDC battery charger return             |
| J1        | P9                           | AC_PE         | $(\underline{=})$ AC input protective earth |
| J1        | P10                          | AC_N          | AC input neutral                            |
| J1        | P11                          | AC_L          | AC input line                               |
|           | Signals and Control          |               |                                             |
| J1        | D1                           | BAT_VSENSE    | Battery voltage positive sense              |
| J1        | C1                           | BAT_VSENSE_R  | Battery voltage negative sense              |
| J1        | B1                           | BAT_FAIL      | Battery fail signal                         |
| J1        | A1                           | BAT_STOP_DCRG | Battery stop discharge signal               |
| J1        | B2                           | BAT_SLEEP     | Battery sleep signal                        |
| J1        | A2                           | BAT_EOL       | Battery end of life signal                  |
| J1        | B3                           | BAT_PROT      | Battery protection signal                   |
| J1        | A3                           | BAT_SOH_CHK   | Battery state of health check signal        |
| J1        | A4                           | BAT_CRG_EN    | Battery charge enable signal                |
| J1        | B5, B7                       | GR5           | Signal ground                               |
| J1        | A5                           | BAT_KILL      | Battery insertion signal                    |
| J1        | D6                           | PS_KILL       | PSU insertion signal                        |
| J1        | C6                           | ISHARE        | Current share signal                        |
| J1        | B6                           | Reserved      |                                             |
| J1        | A6                           | BAT_NSRT/ GR5 | Battery insertion signal / Signal ground    |
| J1        | D7                           | BAT_SCL       | Battery clock line for I2C communication    |
| J1        | C7                           | BAT_SDA       | Battery data line for I2C communication     |
| J1        | A7                           | GR1           | Power ground                                |
| J1        | D8                           | RED_LOST      | Backup redundancy status signal             |
| J1        | C8                           | PWR_FAIL      | Power fail status signal                    |
| J1        | B8                           | CAN_L         | CAN low communication line                  |
| J1        | A8                           | CAN_H         | CAN high communication line                 |
| J1        | D9                           | 12V_SHELF     | Low power 12 V for shelf control supply     |
| J1        | C9                           | SYNC3         | Synchronization signal                      |
| J1        | B9                           | SYNC2         | Synchronization signal                      |
| J1        | A9                           | SYNC1         | Synchronization signal                      |
| J1        | D10                          | ADD1          | Address pin1                                |
| J1        | C10                          | 485_D         | RS485 Data line                             |
| J1        | B10                          | 485_DN        | RS485 Data N line                           |
| J1        | A10                          | 485_RTN       | RS485 ground                                |
| J1        | D11                          | ADD2          | Address pin2                                |
| J1        | C11                          | ADD3          | Address pin3                                |
| J1        | B11                          | ADD4          | Address pin4                                |
| J1        | A11                          | ADD5          | Address pin5                                |
|           |                              |               |                                             |



**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977 North America

+1 408 785 5200 BCD.00343\_010

# 5. V2 POWER SHELF



### 5.1 ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability, and cause permanent damage to the supply.

| PARAME  | TER                   | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT |
|---------|-----------------------|-------------------------|-----|-----|-----|------|
| Vi maxc | Maximum Input Voltage | Continuous              |     |     | 305 | VAC  |

## 5.2 **INPUT**

General Condition:  $T_A = 0...45$  °C unless otherwise noted. Load condition definition: 100% load corresponds to:

- (i) Main 12.6 V: 6600 W + Auxiliary 54 V: 600 W + Battery Charger 52.5 V: 270 W x 3 in AC operation
- (ii) Main 12.6 V: 6600 W + Auxiliary 54 V: 600 W in DC operation

and any fraction of it is scaling down all outputs simultaneous.

| PARAME               | TER                       | DESCRIPTION / CONDITION                                      | MIN  | NOM   | MAX | UNIT |
|----------------------|---------------------------|--------------------------------------------------------------|------|-------|-----|------|
| AC Input             |                           |                                                              |      |       |     |      |
| Viac nom             | Nominal Input Voltage     | 3 Phase                                                      | 200  | 277   |     | VAC  |
| V <sub>iac</sub>     | Input Voltage Range       | Normal operating                                             | 180  |       | 305 | VAC  |
| I <sub>iac max</sub> | Input Current             | @ steady state, Vin = 180 VAC, per phase                     |      | 22.8  |     | А    |
| Iiac inrush          | Inrush Current Limitation | @ cold start, Vin = 290 VAC, $T_A = 35^{\circ}C$ , per phase |      |       | 30  | AP   |
| fi                   | Input Frequency           |                                                              | 47   | 50/60 | 63  | Hz   |
| DC Input             | (from BBU)                |                                                              |      |       |     |      |
| Vidc nom             | Nominal Input Voltage     |                                                              | 33.8 | 52.5  |     | VAC  |
| Vidc                 | DC Input Voltage Range    |                                                              | 32   |       | 53  | VAC  |



### **5.3 OUTPUT**

General Condition:  $T_A = 0...45$  °C unless otherwise noted.

| PARAMETE                            | R                            | DESCRIPTION / CONDITION             | MIN | NOM  | MAX  | UNIT |
|-------------------------------------|------------------------------|-------------------------------------|-----|------|------|------|
| Main Output                         | V1 (12.6 V)                  |                                     |     |      |      |      |
| $P_{1 \ shelf \ nom}$               | Output Power                 |                                     |     | 6600 |      | W    |
| I <sub>1 shelf nom</sub>            | Output Current               |                                     |     | 530  |      | ADC  |
| Cv1 load                            | Capacitive Loading           |                                     | 0   |      | 200  | mF   |
| Auxiliary Out                       | tput VAUX (54 V)             |                                     |     |      |      |      |
| PAUX shelf nom                      | Output Power                 |                                     |     | 600  |      | W    |
| IAUX shelf nom                      | Output Current               |                                     | 0   |      | 11.4 | А    |
| Battery Charger Output VBC (52.5 V) |                              |                                     |     |      |      |      |
| Each BBU is o                       | connected separately to a PS | U. Ratings see Power Module section |     |      |      |      |

# 5.4 SIGNALLING AND CONTROL

### 5.4.1 OVERVIEW

| PARAMETER                    | DESCRIPTION / CONDITION                                                                                                   | CRITERION                                                                                                                                                                                                         |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Signals                |                                                                                                                           |                                                                                                                                                                                                                   |
| ADD35                        | Address pins for RS485 PSU address for the location of<br>the shelf inside the rack;<br>Referred to RS485 isolated ground | Set by the user via a shelf input connector.<br>See also communication manual<br>BCA.00072                                                                                                                        |
| Output Signals               |                                                                                                                           |                                                                                                                                                                                                                   |
| PWR_FAIL                     | Signal to flag potential loss of power due to backup<br>timeout;<br>Active low, normally high open collector signal       | This signal is pulled low if the PSU is 45s in backup and AC is not yet returned                                                                                                                                  |
| RED_LOST                     | Signal to flag loss of redundancy;<br>Active low, normally high open collector signal                                     | This signal is pulled low if at least one<br>PSU or BBU in the shelf has failed, is not<br>operational or is not present.<br>The signal is <u>not</u> pulled low in case of a<br>BAT_PROT or BAT_STOP_DCRG event. |
| Bidirectional Signals to PSU |                                                                                                                           |                                                                                                                                                                                                                   |
| RS485_D / RS485_DN           | RS485 communication lines for monitoring of all PSUs;<br>Isolated from other outputs                                      |                                                                                                                                                                                                                   |
| Bidirectional Signals        |                                                                                                                           |                                                                                                                                                                                                                   |
| BAT_I2C_SDA/<br>BAT_I2C_SCL  | I2C communication to the BBU                                                                                              |                                                                                                                                                                                                                   |

## 5.4.2 LED INDICATOR

The power shelf has a LED on the back side, showing the status of the main 12 V.

| PARAMETER | DESCRIPTION / CONDITION | CRITERION         |
|-----------|-------------------------|-------------------|
| 10//1 50  | Green solid             | If main 12 V >10V |
| 12V LED   | Off                     | Otherwise         |



 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 225 977
 +1 408 785 5200

## 5.5 ELECTROMAGNETIC COMPATIBILITY

## 5.5.1 IMMUNITY

| PARAMETER             | DESCRIPTION / CONDITION                                                                                    | CRITERION |
|-----------------------|------------------------------------------------------------------------------------------------------------|-----------|
| ESD Contact Discharge | IEC / EN 61000-4-2, ±8 kV                                                                                  | A         |
| ESD Air Discharge     | IEC / EN 61000-4-2, ±15 kV                                                                                 | A         |
| EFT / Burst           | IEC / EN 61000-4-4, Level 4                                                                                | A         |
| Surge                 | IEC / EN 61000-4-5<br>Differential Mode 2 kV (Line to Neutral)<br>Common Mode 4 kV (Line/Neutral to Earth) | A         |

## 5.5.2 EMISSION

| PARAMETER                  | DESCRIPTION / CONDITION                                            | CRITERION |
|----------------------------|--------------------------------------------------------------------|-----------|
| Conducted Emission         | FCC Part 15 / EN 55022/ CISPR 22                                   | Class A   |
| Radiated Emission          | FCC Part 15 / EN 55022/ CISPR 22                                   | Class A   |
| Harmonic Current Emissions | IEC 61000-3-2<br>Vi = 277 VAC / 60 Hz & 230 VAC / 50 Hz, 100% load | Class A   |

# 5.6 SAFETY / APPROVALS

Maximum electric strength testing is performed in the factory according to IEC/EN 60950, and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests.

| PARAMETER                                    | DESCRIPTION / CONDITION                                                                                                                                                                                                                     | NOTE                                                 |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Agency Approvals                             | UL 60950-1 2 <sup>nd</sup> Edition<br>CAN/CSA-C22.2 No. 60950-1-07 2 <sup>nd</sup> Edition<br>IEC 60950-1: 2005<br>EN 60950-1: 2006<br>cCSAus<br>CE Mark<br>CB Report & Certificate<br>EU Low Voltage Directive<br>EMC Directive<br>UL94V-0 | Approved by independent body<br>(see CE declaration) |
|                                              | AC Primary to any Secondary (3000 VAC)                                                                                                                                                                                                      | Reinforced                                           |
|                                              | AC Primary to Chassis GND (1500 VAC / 2121 VDC)                                                                                                                                                                                             | Basic                                                |
| Insulation Strength                          | Secondary to Chassis GND (100 VDC)                                                                                                                                                                                                          | Functional                                           |
|                                              | RS485 Communication to AC Primary, Secondary and Chassis GND (500 VDC)                                                                                                                                                                      | Functional                                           |
| Creepage / Clearance                         | Primary (L/N) to chassis (PE)                                                                                                                                                                                                               | According to safety standards                        |
| Creepage / Crearance                         | AC Primary to secondary                                                                                                                                                                                                                     | According to safety standards                        |
|                                              | AC Primary $\Leftrightarrow$ Chassis GND, Secondary and RS485                                                                                                                                                                               | 2121 VDC                                             |
| Due du stiere Elle strie el Otres este Te et | Secondary and RS485 ⇔ AC Primary and Chassis GND                                                                                                                                                                                            | 100 VDC                                              |
| Production Electrical Strength Test          | RS485 $\Leftrightarrow$ AC Primary, Chassis GND and Secondary                                                                                                                                                                               | 500 VDC                                              |
|                                              | Ground Continuity Test                                                                                                                                                                                                                      | 35 A                                                 |

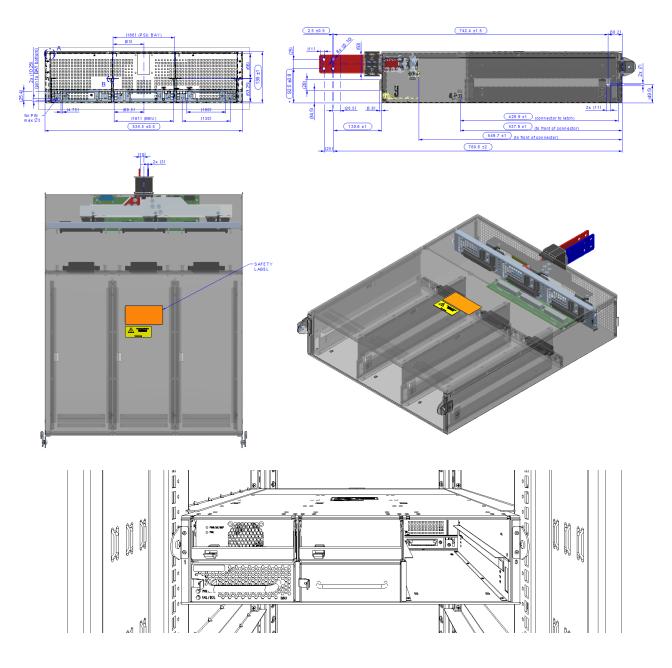


## 5.7 ENVIRONMENTAL

| PAR | AMETER                        | DESCRIPTION / CONDITION                                                                  | MIN | NOM | MAX           | UNIT    |
|-----|-------------------------------|------------------------------------------------------------------------------------------|-----|-----|---------------|---------|
| TA  | Ambient Operating Temperature | Power Shelf is able to start at -15°C                                                    | -5  |     | +45           | °C      |
| Ts  | Storage Temperature           | Non-operational                                                                          | -40 |     | +70           | °C      |
|     | Transport. Temperature        | Short term storage                                                                       | -55 |     | +85           | °C      |
|     | Relative Humidity             | Operation and storage, non-condensing                                                    | 10  |     | 90            | %       |
|     | Altitude                      | Operational (no derating)                                                                | -   |     | 3000<br>10000 | m<br>ft |
|     | Shock Operational             | half-sine 11 ms, 5 shocks, 3 axes                                                        |     |     | 6             | g       |
|     | Shock Non-Operational         | half-sine 11 ms, 10 shocks, 3 axes                                                       |     |     | 12            | g       |
|     | Vibration Operational         | 1.5 mm amplitude, 5 to 500 Hz, 10 sweeps at 1 octave / minute per each of the three axes |     |     | 0.5           | g       |
|     | Vibration Non-Operational     | 3 mm amplitude, 5 to 500 Hz, 10 sweeps at 1 octave / minute per each of the three axes   |     |     | 1.0           | g       |
|     |                               |                                                                                          |     |     |               |         |

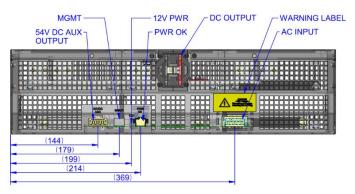
### 5.8 MECHANICAL

| PARAMETER | <b>DESCRIPTION / CONDITION</b> | MIN | NOM   | MAX | UNIT |
|-----------|--------------------------------|-----|-------|-----|------|
|           | Width                          |     | 534.5 |     | mm   |
| Dimension | Height                         |     | 139   |     | mm   |
|           | Depth                          |     | 780.6 |     | mm   |
| Weight    |                                |     | 15.5  |     | kg   |




 Asia-Pacific
 Euro

 +86 755 298 85888
 +


Europe, Middle East +353 61 225 977 North America

+1 408 785 5200 BCD.00343\_010

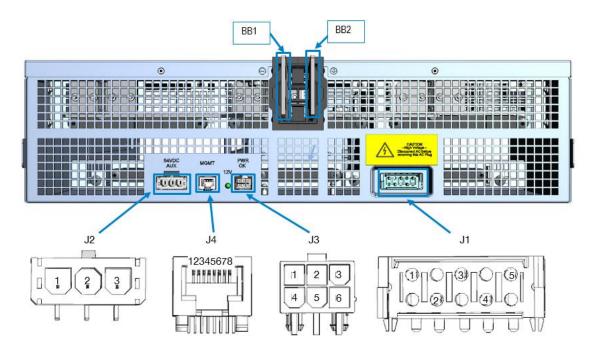




## 5.9 CONNECTORS






| CONNECTOR        | PARAMETER                                       | DESCRIPTION / CONDITION                                | MANUFACTURER<br>P/N | BEL POWER<br>SOLUTION P/N                          |
|------------------|-------------------------------------------------|--------------------------------------------------------|---------------------|----------------------------------------------------|
|                  |                                                 | Main output busbars<br>3 x 50 x 206.1 mm               | -                   | -                                                  |
| 000              | V1 Output busbar                                | Mating part                                            | -                   | -                                                  |
|                  |                                                 | 5pin Scorpion Power Connector,<br>90° PCB mount        | Positronic          | SP5YYE48M0LN9A1/<br>AA-PA1067                      |
| THE REAL         | AC input connector                              | Mating part                                            | Positronic          | SP5YYE1F0091/AA<br>(housing)<br>FC1210P2S/AA (pin) |
|                  | PWR_FAIL and<br>RED_LOST 9V<br>connector        | 2x3 pin Mini-Fit Jr. Power<br>Connector, 90° PCB mount | Molex               | 39-30-1062                                         |
|                  |                                                 | Mating part                                            | Molex               | 39-01-2065 (housing)<br>39-00-0208 (pin)           |
| The Party of the | RS485<br>communication.                         | RJ45 connector, 90° PCB mount                          | FCI                 | 87180-088LF                                        |
| F                | addresses and<br>PWR_FAIL /<br>RED_LOST signals | Mating part                                            | Various             | RJ45 connector                                     |
|                  | Auxiliary output                                | 3 pin Sabre Power Connector,<br>90° PCB mount          | Molex               | 43160-3103                                         |
|                  |                                                 | Mating part                                            | Molex               | 44441-2003 (housing)<br>43375-0001 (pin)           |



Asia-Pacific Euro +86 755 298 85888

Europe, Middle East +353 61 225 977 North America

+1 408 785 5200 BCD.00343\_010



| CONNECTOR           | PIN  | NAME        | DESCRIPTION                                              |
|---------------------|------|-------------|----------------------------------------------------------|
| Power Output        |      |             |                                                          |
| BB1                 |      | V1          | Power ground / 12 VDC return                             |
| BB2                 |      | GR1         | +12 VDC main output                                      |
| J2                  | 1    | AUX_54V     | +54 VDC auxiliary output                                 |
| J2                  | 2    | AUX_54V_R   | 54 VDC auxiliary output return                           |
| J2                  | 3    | PE          | protective earth                                         |
| Power Input         |      |             |                                                          |
| J1                  | 1    | AC_L1       | AC input line                                            |
| J1                  | 2    | AC_N        | AC input neutral                                         |
| J1                  | 3    | AC_L2       | AC input line                                            |
| J1                  | 4    | AC_PE       | AC input protective earth (long pin)                     |
| J1                  | 5    | AC_L3       | AC input line                                            |
| Signals and Control |      |             |                                                          |
| J4                  | 1    | 485_RTN     | RS485 ground                                             |
| J4                  | 2    | PWR_FAIL    | Power fail status signal                                 |
| J4                  | 3    | RED_LOST    | Redundancy status signal                                 |
| J4                  | 4    | 485_D       | RS485 Data line                                          |
| J4                  | 5    | 485_DN      | RS485 Data N line                                        |
| J4                  | 6    | ADD3        | Address pin3                                             |
| J4                  | 7    | ADD4        | Address pin4                                             |
| J4                  | 8    | ADD5        | Address pin5                                             |
| J3                  | 1, 4 | PWR_FAIL_9V | 9 V / 1 A output turned on with power fail status signal |
| J3                  | 2, 5 | GR1         | Power ground                                             |
| J3                  | 3, 6 | RED_LOST_9V | 9 V / 1 A output turned on with redundancy status signal |



# 6. V2 BATTERY BACKUP UNIT



### 6.1 BBU GENERAL INFORMATION

Please see BBU Manufacturer datasheet for detailed information.

### 6.2 MECHANICAL

| PARAMETER | DESCRIPTION / CONDITION | MIN NC | M MAX | UNIT |
|-----------|-------------------------|--------|-------|------|
|           | Width                   | 16     | 0     | mm   |
| Dimension | Height                  | 62     | 2     | mm   |
|           | Depth                   | 433    | 3.7   | mm   |
| Weight    |                         | 5.     | 6     | kg   |

## 6.3 CONNECTORS











**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977 North America

+1 408 785 5200 BCD.00343\_010

# 7. V2 ACCESSORIES

| ITEM | DESCRIPTION                                                          | ORDERING PART<br>NUMBER | SOURCE                      |
|------|----------------------------------------------------------------------|-------------------------|-----------------------------|
|      | Blank Panel PSU<br>Mechanical blank panel to cover<br>empty PSU slot | SPSFCBK-12BP01          | belfuse.com/power-solutions |
|      | Blank Panel BBU<br>Mechanical blank panel to cover<br>empty BBU slot | SPSFCBK-12BP02          | belfuse.com/power-solutions |

# 8. GLOSSARY AND ABBREVATIONS

| DOCUMENT NUMBER | DESCRIPTION                                                                  |
|-----------------|------------------------------------------------------------------------------|
| AUX             | Auxiliary -> used as shortcut for the 300W auxiliary converter               |
| BC              | Battery Charger -> used as shortcut for the 270W battery charger converter   |
| BBU             | Battery Backup Unit                                                          |
| ВКР             | Backup                                                                       |
| CF              | Current Feed -> used as shortcut for the 3600W DC input to HV Bulk converter |
| CRG             | Charge                                                                       |
| DCRG            | Discharge                                                                    |
| EN              | Enable                                                                       |
| EOL             | End of Life                                                                  |
| FW              | Firmware                                                                     |
| HW              | Hardware                                                                     |
| OT /OTP         | Over Temperature (Protection)                                                |
| OV / OVP        | Over Voltage (Protection)                                                    |
| OR              | Oring                                                                        |
| PF              | Power Factor                                                                 |
| PFC             | Power Factor Correction                                                      |
| SOH             | State of Health                                                              |
| SR              | Synchronous Rectification                                                    |
| SW              | Software                                                                     |
| THD             | Total Harmonic Distortion                                                    |
| UV / UVP        | Under Voltage (Protection)                                                   |



## 9. REFERENCES

| DOCUMENT NUMBER | DESCRIPTION                            |
|-----------------|----------------------------------------|
| BCA.00072       | SPAFCBK-11G RS485 Communication Manual |
| BCM 00366 0     | SPAFCBK-11G Installation Instruction   |
| BCM 00367 0     | SPSFCBK-18 Installation Instruction    |
| SPSFCBK-18.FD   | SPSFCBK-18 Mechanical outline drawing  |

## For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems. TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.



 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 225 977
 +1 408 785 5200

© 2018 Bel Power Solutions

BCD.00343\_010