EcoSPARK® 2 Ignition IGBT # 320 mJ, 450 V, N-Channel Ignition IGBT #### **Features** - SCIS Energy = 320 mJ at $T_J = 25$ °C - Logic Level Gate Drive - Low Saturation Voltage - AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant #### **Applications** - Automotive Ignition Coil Driver Circuits - High Current Ignition System - Coil on Plug Application #### MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise noted) | Symbol | Parameter | Value | Unit | |-----------------------------------|--|-------------|------| | BV _{CER} | Collector to Emitter Breakdown
Voltage (IC = 1 mA) | 450 | V | | BV _{ECS} | Emitter to Collector Voltage – Reverse Battery Condition (IC = 10 mA) | 28 | V | | E _{SCIS25} | ISCIS = 14.6 A, L = 3.0 mHy,
RGE = 1 K Ω , T $_{C}$ = 25°C (Note 1) | 320 | mJ | | E _{SCIS150} | ISCIS = 10.9 A, L = 3.0 mHy,
RGE = 1 K Ω , T _C = 150°C (Note 2) | 180 | mJ | | IC25 | Collector Current Continuous at VGE = 4.0 V, T _C = 25°C | 23 | Α | | IC110 | Collector Current Continuous at VGE = 4.0 V, T _C = 110°C | 23 | Α | | V_{GEM} | Gate to Emitter Voltage Continuous | ±10 | V | | PD | Power Dissipation Total, T _C = 25°C | 150 | W | | | Power Dissipation Derating, T _C > 25°C | 1.1 | W/°C | | T _J , T _{STG} | Operating Junction and Storage
Temperature | –55 to +175 | °C | | T_L | Lead Temperature for Soldering
Purposes (1/8" from case for 10 s) | 300 | °C | | T _{PKG} | Reflow Soldering according to
JESD020C | 260 | °C | | ESD | HBM–Electrostatic Discharge Voltage at 100 pF, 1500 Ω | 4 | kV | | | CDM–Electrostatic Discharge Voltage at 1 Ω | 2 | kV | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Self clamped inductive Switching Energy (ESCIS25) of 320 mJ is based on the test conditions that is starting T_J = 25°C, L = 3 mHy, ISCIS = 14.6 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp. - Self Clamped inductive Switching Energy (ESCIS150) of 180 mJ is based on the test conditions that is starting T_J = 150°C, L = 3mHy, ISCIS = 10.9 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp. ## ON Semiconductor® #### www.onsemi.com DPAK3 CASE 369AS #### **MARKING DIAGRAM** A = Assembly Location Y = Year WW = Work Week XXXX = Device Code B = Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 2 of this data sheet. #### THERMAL RESISTANCE RATINGS | Characteristic | Symbol | Max | Units | |---|----------------|-----|-------| | Junction-to-Case - Steady State (Drain) | $R_{ heta JC}$ | 0.9 | °C/W | ## **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Symbol | Parameter | Test Conditions | | Min | Тур. | Max. | Units | |----------------------|---|--|-------------------------------|------|------|------|-------| | OFF CHARA | ACTERISTICS | | | • | | • | | | BV _{CER} | Collector to Emitter Breakdown
Voltage | I_{CE} = 2 mA, V_{GE} = 0 V,
R_{GE} = 1 k Ω ,
T_{J} = -40 to 150°C | | 420 | _ | 480 | V | | BV _{CES} | Collector to Emitter Breakdown
Voltage | I _{CE} = 10 mA, V _{GE} = 0 V,
R _{GE} = 0,
T _J = -40 to 150°C | | 440 | - | 500 | V | | BV _{ECS} | Emitter to Collector Breakdown
Voltage | $I_{CE} = -75 \text{ mA}, V_{GE} = 0 \text{ V},$
$T_{J} = 25^{\circ}\text{C}$ | | 28 | - | - | V | | BV _{GES} | Gate to Emitter Breakdown Voltage | $I_{GES} = \pm 2 \text{ mA}$ | | ±12 | ±14 | - | V | | I _{CER} | Collector to Emitter Leakage Current | V _{CE} = 175 V | T _J = 25°C | - | - | 25 | μА | | | | $R_{GE} = 1 \text{ k}\Omega$ | T _J = 150°C | - | - | 1 | mA | | I _{ECS} | Emitter to Collector Leakage Current | V _{EC} = 24 V | T _J = 25°C | - | - | 1 | mA | | | | | T _J = 150°C | - | - | 40 | 1 | | R ₁ | Series Gate Resistance | · | | - | 120 | - | Ω | | R ₂ | Gate to Emitter Resistance | | | 10K | - | 30K | Ω | | ON CHARAC | CTERISTICS | | | | | | | | V _{CE(SAT)} | Collector to Emitter Saturation Voltage | $I_{CE} = 6 \text{ A}, V_{GE} = 4 \text{ V}, T_{J} = 25^{\circ}\text{C}$ | | _ | 1.13 | 1.25 | V | | V _{CE(SAT)} | Collector to Emitter Saturation Voltage | I _{CE} = 10 A, V _{GE} = 4.5 V, T _J = 150°C | | _ | 1.32 | 1.50 | V | | V _{CE(SAT)} | Collector to Emitter Saturation Voltage | I _{CE} = 15 A, V _{GE} = 5 V, T _J = 150°C | | - | 1.64 | 1.85 | ٧ | | OYNAMIC C | HARACTERISTICS | | | • | | | | | Q _{G(ON)} | Gate Charge | I _{CE} = 10 A, V _{CE} | = 12 V, V _{GE} = 5 V | - | 23 | _ | nC | | V _{GE(TH)} | Gate to Emitter Threshold Voltage | I _{CE} = 1 mA
V _{CE} = V _{GE} | T _J = 25°C | 1.3 | 1.6 | 2.2 | V | | | | | T _J = 150°C | 0.75 | 1.1 | 1.8 |] | | V_{GEP} | Gate to Emitter Plateau Voltage | V _{CE} = 12 V, I _{CE} = 10 A | | - | 2.7 | _ | V | | WITCHING | CHARACTERISTICS | | | | | | | | td _{(ON)R} | Current Turn-On Delay
Time-Resistive | $V_{CE} = 14 \text{ V}, R_L = 1 \Omega, \\ V_{GE} = 5 \text{ V}, R_G = 470 \Omega, \\ T_J = 25^{\circ}\text{C}$ | | _ | 0.9 | 4 | μs | | t _{rR} | Current Rise Time-Resistive | | | - | 2.6 | 7 | 1 | | td _{(OFF)L} | Current Turn-Off Delay
Time-Inductive | $V_{CE} = 300 \text{ V, L} = 1 \text{ mH,}$ $V_{GE} = 5 \text{ V, R}_{G} = 470 \Omega,$ $I_{CE} = 6.5 \text{ A, T}_{J} = 25^{\circ}\text{C}$ | | _ | 5.4 | 15 | | | t _{fL} | Current Fall Time-Inductive | | | _ | 2.7 | 15 | 1 | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ## PACKAGE MARKING AND ORDERING INFORMATION | Device | Package | Shipping [†] | |-----------------|-------------------|------------------------| | FGD3245G2-F085C | DPAK
(Pb-Free) | 2500 Units/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### TYPICAL CHARACTERISTICS Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp Figure 3. Collector to Emitter On–State Voltage vs. Junction Temperature Figure 5. Collector to Emitter On–State Voltage vs. Collector Current Figure 2. Self Clamped Inductive Switching Current vs. Inductance Figure 4. Collector to Emitter On–State Voltage vs. Junction Temperature Figure 6. Collector to Emitter On-State Voltage vs. Collector Current #### TYPICAL CHARACTERISTICS (continued) Figure 7. Collector to Emitter On-State Voltage vs. Collector Current Figure 8. Transfer Characteristics Figure 9. DC Collector Current vs. Case Temperature Figure 10. Gate Charge Figure 11. Threshold Voltage vs. Junction Temperature Figure 12. Leakage Current vs. Junction Temperature ## TYPICAL CHARACTERISTICS (continued) Figure 13. Switching Time vs. Junction Temperature Figure 14. Capacitance vs. Collector to Emitter Figure 15. Break Down Voltage vs. Series Resistance Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case ## **TEST CIRCUIT AND WAVEFORMS** Figure 17. Inductive Switching Test Circuit Figure 18. t_{ON} and t_{OFF} Switching Test Circuit Figure 19. Energy Test Circuit Figure 20. Energy Waveforms #### DPAK3 (TO-252 3 LD) CASE 369AS **ISSUE O DATE 30 SEP 2016** 6.73 6.35 5,46 5.55 MIN-6.50 MIN 6.40 Ċ 0.25 MAX PLASTIC BODY STUB MIN DIODE PRODUCTS VERSION (0.59)-1.25 MIN 0.89 ⊕ 0.25 M AM C 2.29 2.28 4.56 4.57 LAND PATTERN RECOMMENDATION NON-DIODE PRODUCTS VERSION В 2.39 SEE 2.18 4.32 MIN NOTE D 0.58 0.45 5.21 MIN 10.41 9.40 SEE DETAIL A 2 3 NON-DIODE PRODUCTS VERSION DIODE PRODUCTS VERSION ○ 0.10 B 0,51 **GAGE PLANE** NOTES: UNLESS OTHERWISE SPECIFIED 0.61 0.45 A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, (1.54)ISSUE C, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONING AND TOLERANCING PER 10° 1 78 1,40 (2.90) 0.127 MAX DETAIL A **SEATING PLANE** ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ASME Y14.5M-2009. CORNERS OR EDGE PROTRUSION. F) DIMENSIONS ARE EXCLUSSIVE OF BURSS, MOLD FLASH AND TIE BAR EXTRUSIONS. D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED E TRIMMED CENTER LEAD IS PRESENT ONLY FOR DIODE PRODUCTS G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative