

Features

- ESD protection for one line with uni-direction
- Provide transient protection for the protected line to

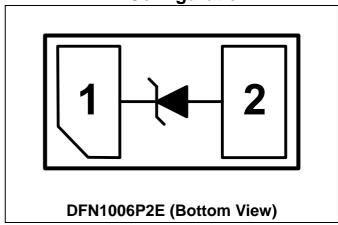
IEC 61000-4-2 (ESD) ±20kV (air/contact)
IEC 61000-4-4 (EFT) 80A (5/50ns)

IEC 61000-4-5 (Lightning) 13A (8/20μs)

- Ultra-low capacitance: 0.85pF typical
- 0402 small DFN package saves board space
- High breakdown voltage to provide over-voltage protection on USB 2.0 D+/D- pins
- Fast turn-on and low clamping voltage
- For low operating voltage applications: 3.3V
- Solid-state silicon-avalanche and active circuit triggering technology
- Green part

Applications

- USB 2.0
- USB Type-C D+/D- pins
- Handheld portable applications
- Data and I/O lines protection
- Analog input lines protection
- Video lines protection


Description

AZ5H33-01F is a design which includes uni-directional surge rated clamping cell protect high-speed data interfaces electronic system. The AZ5H33-01F has been specifically designed to protect sensitive components which are connected to data and transmission lines from over-voltage caused by Electrostatic Discharging (ESD), Electrical Fast (EFT), **Transients** Lightning, and Cable Discharge Event (CDE).

AZ5H33-01F is a unique design which includes proprietary clamping cell in a single package. During transient conditions, the proprietary clamping cell prevents over-voltage on the data lines, which is protecting any downstream components.

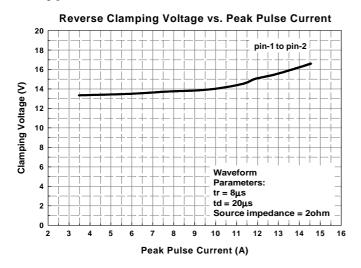
AZ5H33-01F may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (±15kV air, ±8kV contact discharge).

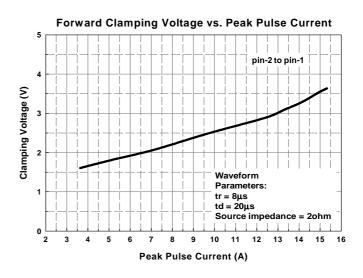
Circuit Diagram / Pin Configuration

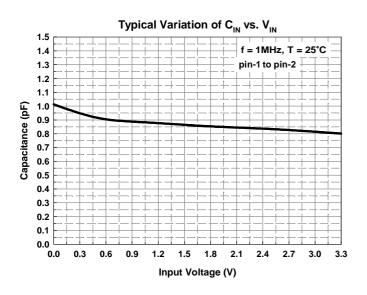
SPECIFICATIONS

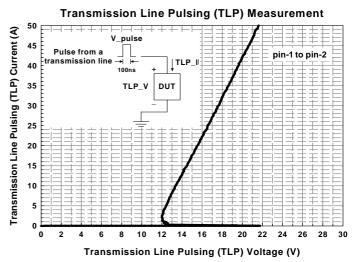
ABSOLUTE MAXIMUM RATINGS (T _A = 25°C, unless otherwise specified)				
PARAMETER	SYMBOL	RATING	UNIT	
Peak Pulse Current (tp=8/20μs)	I _{PP} (Note 1)	13	А	
Operating Voltage (pin-1 to pin-2)	V _{DC}	3.6	\	
ESD per IEC 61000-4-2 (Air)	per IEC 61000-4-2 (Air) V _{ESD-1}		kV	
ESD per IEC 61000-4-2 (Contact)	V_{ESD-2}	±20	KV	
Lead Soldering Temperature	T _{SOL}	260 (10 sec.)	°C	
Operating Temperature	T _{OP}	-55 to +125	°C	
Storage Temperature	T _{STO}	-55 to +150	°C	

ELECTRICAL CHARACTERISTICS						
PARAMETER	SYMBOL	YMBOL CONDITION		TYP	MAX	UNIT
Reverse Stand-Off Voltage	V_{RWM}	Pin-1 to pin-2, T = 25°C.			3.3	V
Reverse Leakage Current	I _{Leak}	$V_R = 15V$, $T = 25^{\circ}C$, pin-1 to pin-2.			1	μΑ
Reverse Breakdown Voltage	V_{BV}	$I_{BV} = 1$ mA, $T = 25$ °C, pin-1 to pin-2.	16		19	V
Forward Voltage	V _F	$I_F = 15\text{mA}$, $T = 25^{\circ}\text{C}$, pin-2 to pin-1.	0.6		1.2	V
Surge Clamping	V _{CL-surge}	$I_{PP} = 5A$, $T = 25^{\circ}C$, pin-1 to pin-2.		13.5		V
Voltage (Note 1)	▼ CL-surge	$I_{PP} = 13A$, T = 25°C, pin-1 to pin-2.		15.5		•
ESD Clamping Voltage (Note 2)	V _{CL-ESD}	IEC 61000-4-2 +8kV (I _{TLP} = 16A), T = 25°C, contact mode, pin-1 to pin-2.		15		V
ESD Dynamic Turn-on Resistance	R _{dynamic}	IEC 61000-4-2, 0~+8kV, contact mode, T = 25 °C, pin-1 to pin-2.		0.2		Ω
Channel Input Capacitance	C _{IN}	$V_R = 1.65V$, $f = 1MHz$, pin-1 to pin-2, $T = 25$ °C.		0.85	1	pF

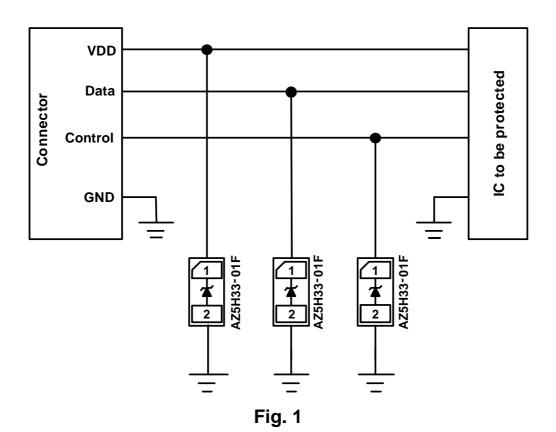

Note 1: The Peak Pulse Current measured conditions: tp = $8/20\mu s$, 20hm source impedance.


Note 2: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.


TLP conditions: Z_0 = 50 Ω , t_p = 100ns, t_r = 1ns.



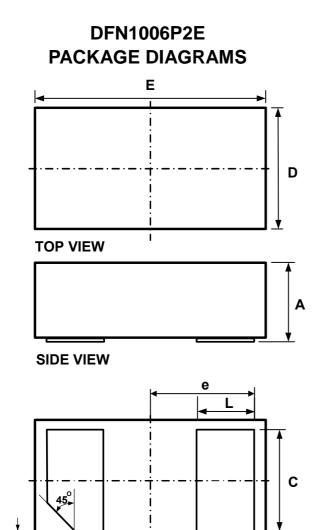
Typical Characteristics


Application Information

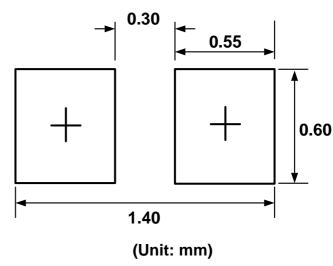
The AZ5H33-01F is designed to protect one line against system ESD / EFT / Lightning pulses by clamping it to an acceptable reference. It provides uni-directional protection.

The usage of the AZ5H33-01F is shown in Fig. 1. Protected lines, such as data line, control line, or power line, is connected to pin 1. The pin 2 should be connected to a ground plane on the board. In order to minimize parasitic inductance in the board traces, all path lengths connected to the pins of AZ5H33-01F should be kept as short as possible.

In order to obtain enough suppression of ESD induced transient, a good circuit board is critical. Thus, the following guidelines are recommended:

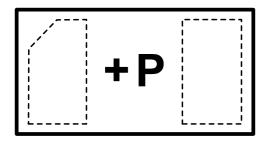

- Minimize the path length between the protected lines and the AZ5H33-01F.
- Place the AZ5H33-01F near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.

Revision 2019/07/22 © 2019 Amazing Micro.


Mechanical Details

CVMDOL	MILLIMETERS			
SYMBOL	MIN.	MAX.		
E	0.95	1.05		
D	0.55	0.65		
Α	0.45	0.55		
е	0.45	BSC		
L	0.20	0.30		
С	0.45	0.55		

0.125 BOTTOM VIEW


LAND LAYOUT

Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

MARKING CODE

Top View

P = Device Code

Part Number	Marking Code			
AZ5H33-01F.R7GR	D			
(Green Part)	r			

Note. Green means Pb-free, RoHS, and Halogen free compliant.

Ordering Information

PN#	Material	Type	Reel size	MOQ	MOQ/internal box	MOQ/carton
AZ5H33-01F.R7GR	Green	T/R	7 inch	12,000/reel	4 reels = 48,000/box	6 boxes = 288,000/carton

Revision History

Revision	Modification Description
Revision 2019/07/22	Formal Release.