CMOS SPI SERIAL E²PROM ## S-25C010A/020A/040A The S-25C010A/020A/040A is SPI serial E^2 PROM which operate at high speed, with low current consumption and the wide range operation. The S-25C010A/020A/040A respectively has the capacity of 1K-bit, 2K-bit, 4K-bit and the organization of 128 words \times 8-bit, 256 words \times 8-bit, 512 words \times 8-bit. These ICs are able to Page Write and sequential read. #### **■** Features • Wide range operation Read : 1.6 to 5.5 V (at -40 to +85°C) Write : $1.7 \text{ to } 5.5 \text{ V (at } -40 \text{ to } +85^{\circ}\text{C})$ • Operation frequency 5.0 MHz (2.5 to 5.5 V), 2.0 MHz (1.6 to 5.5 V) • SPI mode (0, 0) and (1, 1) • Page Write: 16 bytes / page • Sequential read • Write protect: Software, Hardware Protect area: 25%, 50%, 100% Monitors Write to the memory by a status register • Write protect function during the low power supply • CMOS schmitt input $(\overline{\text{CS}}, \text{SCK}, \text{SI}, \overline{\text{WP}}, \overline{\text{HOLD}})$ • Endurance: 10⁶cycles/word^{*1} (at +25°C), *1. For each address (Word: 8-bit) Data retention: 100 years (at +25°C) Memory capacitance: S-25C010A 1K-bit S-25C020A 2K-bit S-25C040A 4K-bit • Data before shipment: Memory array FFh, BP1 = 0, BP0 = 0 • Lead-free product #### ■ Packages | Package name | | Drawing code | | | | | | | | |-------------------|---------|--------------|---------|---------|--|--|--|--|--| | Fackage flatfle | Package | Tape | Reel | Land | | | | | | | 8-Pin SOP (JEDEC) | FJ008-A | FJ008-D | FJ008-D | _ | | | | | | | 8-Pin TSSOP | FT008-A | FT008-E | FT008-E | _ | | | | | | | SNT-8A | PH008-A | PH008-A | PH008-A | PH008-A | | | | | | Caution This product is intended to use in general electronic devices such as consumer electronics, office equipment, and communications devices. Before using the product in medical equipment or automobile equipment including car audio, keyless entry and engine control unit, contact to SII is indispensable. ## ■ Pin Configurations 8-Pin SOP (JEDEC) Top view Figure 1 S-25C010A0I-J8T1G S-25C020A0I-J8T1G S-25C040A0I-J8T1G Table 1 | Pin No. | Symbol | Description | |---------|------------------|---------------------| | 1 | CS*1 | Chip select input | | 2 | SO | Serial data output | | 3 | WP *1 | Write protect input | | 4 | GND | Ground | | 5 | SI ^{*1} | Serial data input | | 6 | SCK*1 | Serial clock input | | 7 | HOLD *1 | Hold input | | 8 | VCC | Power supply | **^{*1.}** All input pins have the CMOS structure. Do not set the input pins in high impedance during operation. Remark See Dimensions for details of the package drawings. 8-Pin TSSOP Top view Figure 2 S-25C010A0I-T8T1G S-25C020A0I-T8T1G S-25C040A0I-T8T1G Table 2 | Pin No. | Symbol | Description | |---------|------------------|---------------------| | 1 | CS *1 | Chip select input | | 2 | SO | Serial data output | | 3 | WP *1 | Write protect input | | 4 | GND | Ground | | 5 | SI ^{*1} | Serial data input | | 6 | SCK*1 | Serial clock input | | 7 | HOLD *1 | Hold input | | 8 | VCC | Power supply | **^{*1.}** All input pins have the CMOS structure. Do not set the input pins in high impedance during operation. Remark See Dimensions for details of the package drawings. SNT-8A Top view Figure 3 S-25C010A0I-I8T1G S-25C020A0I-I8T1G S-25C040A0I-I8T1G Table 3 | Pin No. | Symbol | Description | |---------|------------------|---------------------| | 1 | CS*1 | Chip select input | | 2 | SO | Serial data output | | 3 | WP *1 | Write protect input | | 4 | GND | Ground | | 5 | SI ^{*1} | Serial data input | | 6 | SCK*1 | Serial clock input | | 7 | HOLD *1 | Hold input | | 8 | VCC | Power supply | | | | | **^{*1.}** All input pins have the CMOS structure. Do not set the input pins in high impedance during operation. Remark See Dimensions for details of the package drawings. ## **■** Block Diagram Figure 4 ## ■ Absolute Maximum Ratings #### Table 4 | Item | Symbol | Absolute Maximum Rating | Unit | |-------------------------------|------------------|--------------------------|------| | Power supply voltage | V_{CC} | −0.3 to +7.0 | V | | Input voltage | V_{IN} | −0.3 to +7.0 | V | | Output voltage | V_{OUT} | -0.3 to $V_{CC} + 0.3$ | V | | Operation ambient temperature | T _{opr} | −40 to +85 | °C | | Storage temperature | T _{stq} | −65 to +150 | °C | Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. ## **■** Recommended Operating Conditions Table 5 | Item | Symbol Condition | | Min. | Max. | Unit | |--------------------------|------------------------|--------------------------------|---------------------|---------------------|----------| | Power supply voltage | V _{CC} | Read Operation | 1.6 | 5.5 | V | | | v _{CC} | Write Operation | 1.7 | 5.5 | V | | High level input voltage | V _{IH} | V_{CC} = 1.6 to 5.5 V | $0.7 \times V_{CC}$ | $V_{CC} + 1.0$ | V | | Low level input voltage | V_{IL} | V _{CC} = 1.6 to 5.5 V | -0.3 | $0.3 \times V_{CC}$ | V | ## **■ Pin Capacitance** Table 6 $(Ta = 25 \, ^{\circ}C, f = 1.0 \, MHz, V_{CC} = 5 \, V)$ | Item | Symbol | Condition | Min. | Max. | Unit | |--------------------|------------------|--|------|------|------| | Input capacitance | C _{IN} | $V_{IN} = 0 \text{ V } (\overline{CS}, \text{SCK}, \text{SI}, \overline{WP}, \overline{HOLD})$ | - | 8 | pF | | Output capacitance | C _{OUT} | V _{OUT} = 0 V (SO) | - | 10 | pF | ## **■** Endurance Table 7 | Item | Symbol | Operation Ambient Temperature | Min. | Max. | Unit | |-----------|----------------|-------------------------------|-----------------|------|-----------------| | Endurance | N _W | +25°C | 10 ⁶ | - | cycles / word*1 | ^{*1.} For each address (Word: 8 bits) ## **■** Data Retention Table 8 | Item | Symbol | Operation Ambient Temperature | Min. | Max. | Unit | |----------------|--------|-------------------------------|------|------|------| | Data retention | _ | +25°C | 100 | _ | year | ## **■ DC Electrical Characteristics** #### Table 9 | Item | Symbol | Condition | 00 | to 2.5 V
2.0 MHz | - 00 | to 4.5 V
5.0 MHz | $V_{CC} = 4.5$
$f_{SCK} = 5$ | 5 to 5.5 V
5.0 MHz | Unit | |----------------------------|------------------|----------------------|------|---------------------|------|---------------------|---------------------------------|-----------------------|------| | | | | Min. | Max. | Min. | Max. | Min. | Max. | | | Current consumption (READ) | I _{CC1} | No load at
SO pin | ı | 1.5 | _ | 2.0 | 1 | 2.5 | mA | ## Table 10 | Item | Symbol | Condition | | 7 to 2.5 V
2.0 MHz | | to 4.5 V
.0 MHz | $V_{CC} = 4.5$
$f_{SCK} = 5$ | 5 to 5.5 V
5.0 MHz | Unit | |-----------------------------|------------------|----------------------|------|-----------------------|------|--------------------|---------------------------------|-----------------------|------| | | | | Min. | Max. | Min. | Max. | Min. | Max. | | | Current consumption (WRITE) | I _{CC2} | No load at
SO pin | - | 2.0 | _ | 2.5 | _ | 3.0 | mA | ## Table 11 | Item | Cumphal | Condition | V _{CC} =1.6 | to 2.5 V | V _{CC} =2.5 | to 4.5 V | V _{CC} =4.5 | to 5.5 V | Unit | |-----------------------------|-----------------|--|----------------------|----------|----------------------|----------|----------------------|----------|-------| | item | Symbol | Condition | Min. | Max. | Min. | Max. | Min. | Max. | Ullit | | Standby current consumption | I _{SB} | CS = Vcc,
SO = Open
Other inputs are
Vcc or GND | - | 1.5 | - | 1.5 | - | 1.5 | μА | | Input leakage current | ILI | V_{IN} = GND to V_{CC} | _ | 1.0 | _ | 1.0 | _ | 1.0 | μΑ | | Output leakage current | I_{LO} | V_{OUT} = GND to V_{CC} | _ | 1.0 | _ | 1.0 | _ | 1.0 | μΑ | | Low level | V_{OL1} | I _{OL} = 2.0 mA | _ | ı | _ | 0.4 | _ | 0.4 | V | | output voltage | V_{OL2} | I _{OL} = 1.5 mA | _ | 0.4 | _ | 0.4 | _ | 0.4 | V | | High level | V_{OH1} | $I_{OH} = -2.0 \text{ mA}$ | _ | ı | $0.8 \times V_{CC}$ | _ | $0.8 \times V_{CC}$ | - | V | | output voltage | V_{OL2} | $I_{OH} = -0.4 \text{ mA}$ | $0.8 \times V_{CC}$ | _ | $0.8 \times V_{CC}$ | _ | $0.8 \times V_{CC}$ | _ | V | ## ■ AC Electrical Characteristics **Table 12 Measurement Conditions** | Input pulse voltage | $0.2 \times V_{CC}$ to $0.8 \times V_{CC}$ | |--------------------------|--| | Output reference voltage | $0.5 \times V_{CC}$ | | Output load | 100 pF | #### Table 13 | | | | Table 13 | | | | | | |--|--------------------------|------|------------------------------------|------|-------------------------|------|------|-------| | Item | Symbol V _{CC} = | | 6 to 2.5 V $V_{CC} = 2.5$ to 4.5 V | | V_{CC} = 4.5 to 5.5 V | | Unit | | | litem | Symbol | Min. | Max. | Min. | Max. | Min. | Max. | Offic | | SCK clock frequency | f _{SCK} | _ | 2.0 | _ | 5.0 | _ | 5.0 | MHz | | CS setup time during CS falling | t _{CSS.CL} | 150 | _ | 90 | _ | 90 | _ | ns | | CS setup time during CS rising | t _{CSS.CH} | 150 | _ | 90 | _ | 90 | _ | ns | | CS deselect time | t _{CDS} | 200 | _ | 90 | _ | 90 | ı | ns | | CS hold time during CS falling | t _{CSH.CL} | 200 | _ | 90 | _ | 90 | ı | ns | | CS hold time during CS rising | t _{CSH.CH} | 150 | _ | 90 | _ | 90 | ı | ns | | SCK clock time "H" *1 | t _{HIGH} | 200 | _ | 90 | _ | 90 | ı | ns | | SCK clock time "L" *1 | t _{LOW} | 200 | _ | 90 | _ | 90 | _ | ns | | Rising time of SCK clock *2 | t _{RSK} | _ | 1 | _ | 1 | _ | 1 | μs | | Falling time of SCK clock *2 | t _{FSK} | _ | 1 | _ | 1 | _ | 1 | μs | | SI data input setup time | t _{DS} | 50 | _ | 20 | _ | 20 | _ | ns | | SI data input hold time | t _{DH} | 60 | _ | 30 | _ | 30 | _ | ns | | SCK "L" hold time during HOLD rising | t _{SKH.HH} | 150 | _ | 70 | _ | 70 | - | ns | | SCL "L" hold time
during HOLD falling | t _{SKH.HL} | 100 | - | 40 | - | 40 | - | ns | | SCK "H" setup time
during HOLD falling | t _{SKS.HL} | 150 | - | 60 | - | 60 | _ | ns | | SCK "H" setup time
during HOLD rising | t _{sks.HH} | 150 | _ | 60 | _ | 60 | - | ns | | Disable time of SO output *2 | t _{OZ} | _ | 200 | _ | 100 | - | 100 | ns | | Delay time of SO output | t _{OD} | _ | 150 | _ | 70 | - | 70 | ns | | Hold time of SO output | t _{OH} | 0 | _ | 0 | _ | 0 | _ | ns | | Rising time of SO output *2 | t_{RO} | _ | 100 | _ | 40 | - | 40 | ns | | Falling time of SO output *2 | t _{FO} | _ | 100 | _ | 40 | - | 40 | ns | | Disable time of SO output during HOLD falling *2 | t _{OZ.HL} | _ | 200 | _ | 100 | _ | 100 | ns | | Delay time of SO output during HOLD rising *2* | t _{OD.HH} | _ | 150 | _ | 50 | _ | 50 | ns | | WP setup time | t _{WS1} | 0 | _ | 0 | _ | 0 | _ | ns | | WP hold time | t _{WH1} | 0 | _ | 0 | _ | 0 | _ | ns | | WP release / setup time | t _{WS2} | 0 | _ | 0 | _ | 0 | _ | ns | | WP release / hold time | t _{WH2} | 60 | _ | 30 | _ | 30 | 1 | ns | ^{*1.} The clock cycle of the SCK clock (frequency f_{SCK}) is $1/f_{SCK}$ μ s. This clock cycle is determined by a combination of several AC characteristics. Note that the clock cycle cannot be set as $(1/f_{SCK}) = t_{LOW}$ (Min.) + t_{HIGH} (Min.) by minimizing the SCK clock cycle time. ^{*2.} These are values of sample and not 100% tested. Table 14 | Item | Symbol | $V_{CC} = 1.7$ | Unit | | |------------|-----------------|----------------|------|-------| | item | Symbol | Min. | Max. | Offic | | Write time | t _{PR} | _ | 4.0 | ms | Figure 5 Serial input timing Figure 6 Hold timing Figure 7 Serial output timing Figure 8 Valid timing in Write protect Figure 9 Invalid timing in Write protect #### **■ Pin Functions** ## 1. CS (Chip select input) Pin This is an input pin to set a chip in the select status. In the "H" input level, the device is in the non-select status and its output is high impedance. The device is in standby as long as it is not in Write inside. The device goes in active by setting the chip select to "L". Input any instruction code after power-on and a falling of chip select. #### 2. SI (Serial data input) pin This pin is to input serial data. This pin receives an instruction code, an address and Write data. This pin latches data at rising edge of serial clock. #### 3. SO (Serial data output) pin This pin is to output serial data. The data output changes at falling edge of serial clock. #### 4. SCK (Serial clock input) pin This is a clock input pin to set the timing of serial data. An instruction code, an address and Write data are received at a rising edge of clock. Data is output at falling edge of clock. ## 5. WP (Write protect input) pin This is an input pin to protect memory data when Write instruction (WRITE, WRSR) is being input. By setting this pin to "L", the WEL bit in the status register is set to "L". Therefore S-25C010A/020A/040A does not Write to the E²PROM, however, it accepts other instructions. Fix this pin "H" or "L" not to set it in the floating state. Refer to "■ **Protect Operation**" for details. #### 6. HOLD (HOLD input) pin This pin is used to pause serial communications without setting the device in the non-select status. In the hold status, the serial output goes in high impedance, the serial input and the serial clock go in "Don't care". During the hold operation, be sure to set the device in active by setting the chip select (\overline{CS} pin) to "L". Refer to "■ Hold Operation" for details. ## ■ Instruction Setting **Table 15 and 16** are the lists of instruction for the S-25C010A/020A/040A. The instruction is able to be input by changing the $\overline{\text{CS}}$ pin "H" to "L". Input the instruction in the MSB first. Each instruction code is organized with 1-byte as shown below. If the S-25C010A/020A/040A receives any invalid instruction code, the device goes in the non-select status. #### 1. S-25C010A020A Table 15 | | | Instruction code | Address | Data | |-------------|------------------------------|------------------|------------------------|--------------------| | Instruction | Operation | SCK input clock | SCK input clock | SCK input clock | | | | 1 to 8 | 9 to 16 | 17 to 24 | | WREN | Write enable | 0000 X110 | _ | _ | | WRDI | Write disable | 0000 X100 | _ | _ | | RDSR | Read the status register | 0000 X101 | b7 to b0 output *1 | _ | | WRSR | Write in the status register | 0000 X001 | b7 to b0 input | _ | | READ | Read memory data | 0000 X011 | A7 ^{*2} to A0 | D7 to D0 output *3 | | WRITE | Write memory data | 0000 X010 | A7 ^{*2} to A0 | D7 to D0 input | ^{*1.} Sequential data reading is possible. Remark X = Don't care. #### 2. S-25C040A Table 16 | | | Instruction code | Address | Data | |-------------|------------------------------|------------------------------|--------------------|--------------------| | Instruction | Operation | SCK input clock | SCK input clock | SCK input clock | | | | 1 to 8 | 9 to 16 | 17 to 24 | | WREN | Write enable | 0000 X110 | _ | _ | | WRDI | Write disable | 0000 X100 | _ | _ | | RDSR | Read the status register | 0000 X101 | b7 to b0 output *1 | _ | | WRSR | Write in the status register | 0000 X001 | b7 to b0 input | _ | | READ | Read memory data | 0000 [A8 ^{*2}] 011 | A7 to A0 | D7 to D0 output *3 | | WRITE | Write memory data | 0000 [A8 ^{*2}] 010 | A7 to A0 | D7 to D0 input | ^{*1.} Sequential data reading is possible. ^{*2.} In the S-25C010A, A7 = Don't care because the address range is A6 to A0. ^{*3.} After outputting data in the specified address, data in the following address is output. ^{*2.} In the S-25C040A, assign bit A8 in the address into the fifth bit in an instruction code. ^{*3.} After outputting data in the specified address, data in the following address is output. #### ■ Operation ## 1. Status register The status register's organization is below. The status register can Write and Read by a specific instruction. Figure 10 Organization of status register The status/control bits of the status register are as follows. #### 1. 1 BP1, BP0 (b3, b2): Block Protect Bit BP1 and BP0 are composed of the nonvolatile bit. The area size of Software Protect against WRITE instruction is defined by them. Rewriting these bits is possible by the WRSR instruction. To protect the memory area against the WRITE instruction, set either or both of bit BP1 and BP0 to "1". Rewriting bit BP1 and BP0 is possible unless they are in Hardware Protect mode (WP pin is "L"). Refer to " Protect Operation" for details of "Block Protect". #### 1. 2 WEL (b1): Write Enable Latch Bit WEL shows the status of internal Write Enable Latch. Bit WEL is set by the WREN instruction only. If bit WEL is "1", this is the status that Write Enable Latch is set. If bit WEL is "0", Write Enable Latch is in reset, so that the S-25C010A/020A/040A does not receive the WRITE or WRSR instruction. Bit WEL is reset after these operations; - · the power supply voltage is dropping - power-on - · after performing WRDI - after the Write operation by the WRSR instruction has completed - · after the Write operation by the WRITE instruction has completed - after setting the WP pin to "L" #### 1. 3 WIP (b0): Write In Progress Bit WIP is Read Only and shows whether the internal memory is in the Write operation or not by the WRITE or WRSR instruction. Bit WIP is "1" during the Write operation but "0" during any other status. ## 2. Write enable (WREN) Before writing data (WRITE and WRSR), be sure to set bit Write Enable Latch (WEL). This instruction is to set bit WEL. Its operation is below. After selecting the device by the chip select (\overline{CS}), input the instruction code from serial data input (SI). To set bit WEL, set the device in the non-select status by \overline{CS} at the 8th clock of the serial clock (SCK). To cancel the WREN instruction, input the clock different from a specified value (n = 8 clock) while \overline{CS} is in "L". Figure 11 WREN operation ## 3. Write disable (WRDI) The WRDI instruction is one of ways to reset bit Write Enable Latch (WEL). After selecting the device by the chip select (\overline{CS}) , input the instruction code from serial data input (SI). To reset bit WEL, set the device in the non-select status by $\overline{\text{CS}}$ at the 8th clock of the serial clock. To cancel the WRDI instruction, input the clock different from a specified value (n = 8 clock) while $\overline{\text{CS}}$ is in "L". Bit WEL is reset after the operations shown below. - The power supply voltage is dropping - · Power on - After performing WRDI - After the completion of Write operation by the WRSR instruction - After the completion of Write operation by the WRITE instruction - After setting the WP pin to "L" Figure 12 WRDI operation ## 4. Read the status register (RDSR) Reading data in the status register is possible by the RDSR instruction. During the Write operation, it is possible to confirm the progress by checking bit WIP. Set the chip select (\overline{CS}) "L" first. After that, input the instruction code from serial data input (SI). The status of bit in the status register is output from serial data output (SO). Sequential Read is available for the status register. To stop the Read cycle, set \overline{CS} to "H". It is possible to read the status register always. The bits in it are valid and can be read by RDSR even in the Write cycle. However, during the Write cycle in progress, the nonvolatile bits BP1, BP0 are fixed in a certain value. These updated values of bit can be obtained by inputting another new RDSR instruction after the Write cycle has completed. Contrarily, two of Read Only bits WEL and WIP are being updated while the Write cycle is in progress. b7, b6, b5, b4 are "1" when they are read by the RDSR instruction. Figure 13 RDSR operation #### 5. Write in the status register (WRSR) The values of status register (BP1, BP0) can be rewritten by inputting the WRSR instruction. But b7, b6, b5, b4, b1, b0 of status register cannot be rewritten. b7 to b4 are always "1" when reading the status register. Before inputting the WRSR instruction, set bit WEL by the WREN instruction. The operation of WRSR is shown below. Set the chip select (\overline{CS}) "L" first. After that, input the instruction code and data from serial data input (SI). To start WRSR Write (t_{PR}) , set the chip select (\overline{CS}) to "H" after inputting data or before inputting a rising of the next serial clock. It is possible to confirm the operation status by reading the value of bit WIP during WRSR Write. Bit WIP is "1" during Write, "0" during any other status. Bit WEL is reset when Write is completed. With the WRSR instruction, the values of BP1 and BP0; which determine the area size the users can handle as the Read Only memory; can be changed. But if the signal $\overline{\text{WP}}$ is in "L", S-25C010A/020A/040A does not send the WRSR instruction (Refer to "**Protect Operation**"). Bit BP1, BP0 keep the value which is the one prior to the WRSR instruction during the WRSR instruction. The newly updated value is changed when the WRSR instruction has completed. To cancel the WRSR instruction, input the clock different from a specified value (n = 16clock) while \overline{CS} is in "L". Figure 14 WRSR operation ## 6. Read memory data (READ) The Read operation is shown below. Input the instruction code and the address from serial data input (SI) after inputting "L" to the chip select (\overline{CS}). The input address is loaded to the internal address counter, and data in the address is output from the serial data output (SO). Next, by inputting the serial clock (SCK) keeping the chip select ($\overline{\text{CS}}$) in "L", the address is automatically incremented so that data in the following address is sequentially output. The address counter rolls over to the first address by increment in the last address. To finish the Read cycle, set \overline{CS} to "H". It is possible to raise the chip select always during the cycle. During Write, the read instruction code is not be accepted or operated. ^{*1} In the S-25C010A, A7 = Don't care because the address range is A6 to A0. Figure 15 READ operation (S-25C010A/020A) ^{*1} In the S-25C040A, assign bit A8 in the address into the fifth bit in an instruction code. Figure 16 READ operation (S-25C040A) ## 7. Write memory data (WRITE) Figure 17 and 18 show the timing chart when inputting 1-byte data. Input the instruction code, the address and data from serial data input (SI) after inputting "L" to the chip select (\overline{CS}). To start Write (t_{PR}), set the chip select (\overline{CS}) to "H" after inputting data or before inputting a rising of the next serial clock. Bit WIP is reset to "0" when Write has completed. The S-25C010A/020A/040A can Page Write of 16 bytes. Its function to transmit data is as same as Byte Write basically, but it operates Page Write by receiving sequential 8-bit Write data as much data as page size has. Input the instruction code, the address and data from serial data input (SI) after inputting "L" in \overline{CS} , as the WRITE operation (page) shown in Figure 19 and 20. Input the next data while keeping \overline{CS} in "L". After that, repeat inputting data of 8-bit sequentially. At the end, by setting \overline{CS} to "H", the WRITE operation starts (t_{PR}). 5 of the lower bits in the address are automatically incremented every time when receiving Write data of 8-bit. Thus, even if Write data exceeds 16 bytes, the higher bits in the address do not change. And 4 of lower bits in the address roll over so that Write data which is previously input is overwritten. These are cases when the WRITE instruction is not accepted or operated. - Bit WEL is not set to "1" (not set to "1" beforehand immediately before the WRITE instruction) - During Write - The address to be written is in the protect area by BP1 and BP0. - The signal WP is in "L". To cancel the WRITE instruction, input the clock different from a specified value (n = 16+m \times 8clock) while \overline{CS} is in "L". ^{*1} In the S-25C010A, A7 = Don't care because the address range is A6 to A0. Figure 17 WRITE operation (1-byte) (S-25C010A/020A) ^{*1} In the S-25C040A, assign bit A8 in the address into the fifth bit in an instruction code. Figure 18 WRITE operation (1-byte) (S-25C040A) ^{*1} In the S-25C010A, A7 = Don't care because the address range is A6 to A0. Figure19 WRITE operation (page) (S-25C010A/020A) ^{*1} In the S-25C040A, assign bit A8 in the address into the fifth bit in an instruction code. Figure 20 WRITE operation (page) (S-25C040A) ## **■** Protect Operation **Table 17** shows the block settings of Write protect. Setting value in Protect Bit (BP1, BP0) in the status register protects data in the area of all/50%/25% of the memory address. Setting signal $\overline{\text{WP}}$ to "L" provides the following settings. - Write protect for the WRITE, WRSR instructions - Reset bit WEL Figure 8 and 9 show the Valid timing in Write protect and Invalid timing in Write protect. Table 17 The block settings of Write protect | Status register The area of Write protect | | Address of Write protect block | | | | |-------------------------------------------|-----|--------------------------------|--------------|------------|------------| | BP1 | BP0 | The area or write protect | S-25C040A | S-25C020A | S-25C010A | | 0 | 0 | 0 % | None | None | None | | 0 | 1 | 25 % | 180h to 1FFh | C0h to FFh | 60h to 7Fh | | 1 | 0 | 50 % | 100h to 1FFh | 80h to FFh | 40h to 7Fh | | 1 | 1 | 100 % | 000h to 1FFh | 00h to FFh | 00h to 7Fh | ## ■ Hold Operation The hold operation is used to pause serial communications without setting the device in the non-select status. In the hold status, the serial data output goes in high impedance, and both of the serial data input and the serial clock go in "Don't care". Be sure to set the chip select (\overline{CS}) to "L" to set the device in the select status during the hold status. Generally, during the hold status, the device holds the select status. But if setting the device in the non-select status, the users can finish the operation even in progress. Figure 21 shows the hold operation. Set Hold ($\overline{\text{HOLD}}$) to "L" when the serial clock (SCK) is in "L", Hold ($\overline{\text{HOLD}}$) is switched at the same time the hold status starts. If setting Hold ($\overline{\text{HOLD}}$) to "H", Hold ($\overline{\text{HOLD}}$) is switched at the same time the hold status ends. Set Hold ($\overline{\text{HOLD}}$) to "L" when the serial clock (SCK) is in "H"; the hold status starts when the serial clock goes in "L" after Hold ($\overline{\text{HOLD}}$) is switched. If setting Hold ($\overline{\text{HOLD}}$) to "H", the hold status ends when the serial clock goes in "L" after Hold ($\overline{\text{HOLD}}$) is switched. Figure 21 Hold operation ## ■ Write Protect Function during the Low Power Supply Voltage The S-25C010A/020A/040A has a built-in detection circuit which operates with the low power supply voltage. The S-25C010A/020A/040A cancels the Write operation (WRITE, WRSR) when the power supply voltage drops and power-on, at the same time, goes in the Write protect status (WRDI) automatically to reset bit WEL. Its detection and release voltages are 1.20 V Typ. (Refer to **Figure 22**). To operate Write, after the power supply voltage dropped once but rose to the voltage level which allows Write again, be sure to set the Write Enable Latch bit (WEL) before operating Write (WRITE, WRSR). In the Write operation, data in the address written during the low power supply voltage is not assured. Figure 22 Operation during low power supply voltage #### ■ I/O Pin #### 1. Connection of input pin All input pins in S-25C010A/020A/040A have the CMOS structure. Do not set these pins in high impedance during operation when you design. Especially, set the $\overline{\text{CS}}$ input in the non-select status "H" during power-on/off and standby. The error Write does not occur as long as the $\overline{\text{CS}}$ pin is in the non-select status "H". Set the $\overline{\text{CS}}$ pin to V_{CC} via a resistor (the pull-up resistor of 10 to 100 k Ω). To prevent the error for sure, it is recommended to set other input pins than the \overline{CS} pin via a pull-up resistor. #### 2. Equivalent circuit of I/O pin **Figure 23** and **24** show the equivalent circuits of input pins in S-25C010A/020A/040A. A pull-up and pull-down elements are not included in each input pin, pay attention not to set it in the floating state when you design. Figure 25 shows the equivalent circuit of the output pin. This pin has the tri-state output of "H" level/"L" level/High-Z. ## 2. 1 Input pin Figure 23 CS, SCK Pin Figure 24 SI, WP, HOLD Pin #### 2. 2 Output pin Figure 25 SO Pin #### 3. Precaution for use Absolute maximum ratings: Do not operate these ICs in excess of the absolute maximum ratings (as listed on the data sheet). Exceeding the supply voltage rating can cause latch-up. Operations with moisture on the E^2PROM pins may occur malfunction by short-circuit between pins. Especially, in occasions like picking the E^2PROM up from low temperature tank during the evaluation. Be sure that not remain frost on the E^2PROM pin to prevent malfunction by short-circuit. Also attention should be paid in using on environment, which is easy to dew for the same reason. ## ■ Precautions - Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. - SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of the products including this IC upon patents owned by a third party. ## **■ Product Name Structure** # No. FJ008-A-P-SD-2.1 | TITLE | SOP8J-D-PKG Dimensions | | | |------------------------|------------------------|--|--| | No. | FJ008-A-P-SD-2.1 | | | | SCALE | | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | Seiko Instruments Inc. | | | | ## No. FJ008-D-C-SD-1.1 | TITLE | SOP8J-D-Carrier Tape | | | |------------------------|----------------------|--|--| | No. | FJ008-D-C-SD-1.1 | | | | SCALE | | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | Seiko Instruments Inc. | | | | # No. FJ008-D-R-SD-1.1 | TITLE | SOP8J-D-Reel | | | | |------------------------|--------------|-----------|-------|--| | No. | FJ008 | B-D-R-SD- | 1.1 | | | SCALE | | QTY. | 2,000 | | | UNIT | mm | | | | | | | | | | | | | | | | | | | | | | | Seiko Instruments Inc. | | | | | # No. FT008-A-P-SD-1.1 | TITLE | TSSOP8-E-PKG Dimensions | | | |------------------------|-------------------------|--|--| | No. | FT008-A-P-SD-1.1 | | | | SCALE | | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | | Saika Inatrumanta Ina | | | | Seiko Instruments Inc. | | | | ## No. FT008-E-C-SD-1.0 | TITLE | TSSOP8-E-Carrier Tape | | | | | |-------|------------------------|--|--|--|--| | No. | FT008-E-C-SD-1.0 | | | | | | SCALE | | | | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 5 | Seiko Instruments Inc. | | | | | # No. FT008-E-R-SD-1.0 | TITLE | TSSOP8-E-Reel | | | | |------------------------|------------------|--|------|-------| | No. | FT008-E-R-SD-1.0 | | | | | SCALE | | | QTY. | 3,000 | | UNIT | mm | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Seiko Instruments Inc. | | | | | # No. PH008-A-P-SD-2.0 | TITLE | SNT-8A-A-PKG Dimensions | | |------------------------|-------------------------|--| | No. | PH008-A-P-SD-2.0 | | | SCALE | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | Seiko Instruments Inc. | | | ## No. PH008-A-C-SD-1.0 | TITLE | SNT-8A-A-Carrier Tape | | |------------------------|-----------------------|--| | No. | PH008-A-C-SD-1.0 | | | SCALE | | | | UNIT | mm | | | | | | | | | | | | | | | | | | | Seiko Instruments Inc. | | | # No. PH008-A-R-SD-1.0 | TITLE | SNT-8A-A-Reel | | | |------------------------|------------------|------|-------| | No. | PH008-A-R-SD-1.0 | | | | SCALE | | QTY. | 5,000 | | UNIT | mm | | | | | | | | | | | | | | | | | | | Seiko Instruments Inc. | | | | Caution Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff. 注意 パッケージ下への配線パターン形成は可能ですが、本パッケージはスタンドオフが無いので、パターン上のレジスト厚み、シルク印刷の厚みによってパッケージが持ち上がることがありますのでご配慮ください。 No. PH008-A-L-SD-3.0 | TITLE | SNT-8A-A-Land Recommendation | | |------------------------|------------------------------|--| | No. | PH008-A-L-SD-3.0 | | | SCALE | | | | UNIT | mm | | | | | | | | | | | | | | | Seiko Instruments Inc. | | | - The information described herein is subject to change without notice. - Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. - When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. - Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. - The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. - Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.