L1131C Preliminary CMOS IC

LOW NOISE 150mA LDO REGULATOR

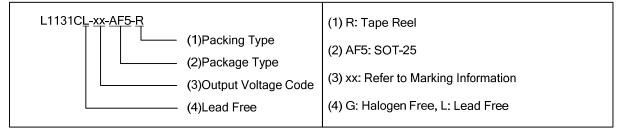
■ DESCRIPTION

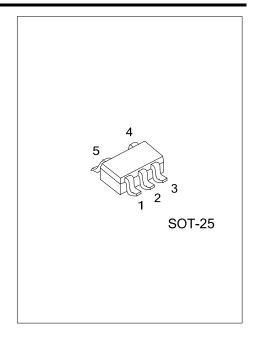
The UTC **L1131C** is a typical LDO (linear regulator) with the features of High output voltage accuracy, low supply current, low ON-resistance, and high ripple rejection.

During normal operation of UTC **L1131C**, the dropout voltage is very low, and the response of line transient and load transient are very well.

Inside each UTC **L1131C**, there're many functions which can be seen in the block figure, for example, a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit, and a chip enable circuit.

The UTC **L1131C** can be used as an ideal of power source for hand-held communication equipment, such as cameras, VCRs, camcorders and other battery-powered equipment.

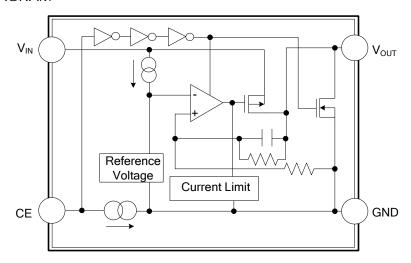



- * Ultra Supply Current: 75µA(typ.)
- * Standby Mode: 0.1µA(typ.)
- * Very Low Dropout Voltage: 0.28V(typ.) @I_{OUT}=150mA, V_{OUT}=2.5V
- * Ripple Rejection: 70dB(typ.)@f=1kHz 60dB(typ.)@f=10kHz
- * Temperature-Drift Coefficient
- of Output Voltage: ±100ppm/°C(typ.)
- * Well Line Regulation: 0.02%/V(typ.)
- * Output Voltage Accuracy: ±2.0%(typ.)
- * Internal Fold Back Protection Circuit
- * C_{IN} = C_{OUT} = $1\mu F$ or more (Ceramic capacitors) are recommended to be used with this IC

ORDERING INFORMATION

Lead Free Halogen Free Package 1 2 3 4 5 L1131CL-xx-AF5-R L1131CG-xx-AF5-R SOT-25 I G C N O Tape Reel	L	Orderin	Deelsese		Pin A	Daaldaa					
L1131CL-xx-AF5-R L1131CG-xx-AF5-R SOT-25 I G C N O Tape Reel		Lead Free	Halogen Free	Раскаде	1	2	3	4	5	Packing	
		L1131CL-xx-AF5-R	L1131CG-xx-AF5-R	SOT-25	I	G	С	Ν	0	Tape Reel	

Note: Pin Assignment: I:V_{IN} O:V_{OUT} G:GND C:CE N:NC


MARKING

PACKAGE	VOLTAGE CODE	MARKING
SOT-25	20:2.0V 25:2.5V	G: Halogen Free L: Lead Free Voltage Code

■ PIN DESCRIPTION

PIN NO	PIN NAME	DESCRIPTION
1	V_{IN}	Input pin
2	GND	Ground pin
3 CE		Input pin for chip enable, "high" means enable the chip.
4 NC		No connection
5	V _{OUT}	Output pin

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	6.5	V
Input Voltage (CE Pin)	V_{CE}	6.5	V
Output Voltage	V _{OUT}	-0.3~V _{IN} +0.3	V
Output Current	l _{out}	200	mA
Power Dissipation	P_D	420	mW
Junction Temperature	T_J	+125	°C
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

L1131C-2.0V

PARAMETER		SYMBOL	TEST CONDITIONS			TYP	MAX	UNIT
Output Voltage		V _{OUT}	V_{IN} = Set V_{OUT} +1V, 1mA $\leq I_{OUT} \leq 30$ mA				2.04	V
Input Voltage		V _{IN}	, , , , , , , , , , , , , , , , , , , ,		1.96		6.0	V
Load Regulation		$\frac{\Delta V_{OUT}}{\Delta I_{OUT}}$	V_{IN} = Set V_{OUT} +1 V_{IMA} = I_{OUT} \le 150mA			22	40	mV
Output Current		I _{OUT}	$V_{IN}-V_{OUT} = 1.0V$		150			mA
Supply Current		I _{SS}	V _{IN} = Set V _{OUT} +1V, I _{OUT} = 0mA			75	95	μΑ
Supply Current (Standby)		I _{ST-BY}	V _{IN} = Set V _{OUT} +1V V _{CE} = GND			0.1	1.0	μΑ
Short Current Limit		I _{LIMIT}	V _{OUT} = 0V			40		mA
CE Input Voltage	High	V_{CEH}					V_{IN}	V
CE Input Voltage Low		V_{CEL}			0.0		0.3	V
Output Noise		eN	BW = 10Hz ~ 100kHz			30		μVrms
CE Pull-down Resistance		R_{PD}			0.7	2.0	8.0	ΜΩ
District Delication		RR	Ripple 0.5Vp-p	f=1kHz		70		dB
Ripple Rejection		KK	$V_{IN}-V_{OUT} = 1.0V, I_{OUT} = 30mA$	f=10kHz		60		dB
Dropout Voltage		V_D	I _{OUT} =150mA			0.32	0.55	V
Line Regulation		$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Set V _{OUT} +0.5V ≤V _{IN} ≤6.0V, I _{OUT} =30mA			0.02	0.10	%/V
Output Voltage		ΔV_{OUT}	I _{OUT} = 30mA			±100		ppm/°C
Temperature Coefficient		ΔΤ	-40°C ≤ T _{OPR} ≤85°C			±100		ррпі/ С
On Resistance of Nch for Auto Discharge		R _{LOW}	V _{CE} = 0V			60		Ω


■ ELECTRICAL CHARACTERISTICS(Cont.)

L1131C-2.5V

		1						
PARAMETER		SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Output Voltage		V_{OUT}	V _{IN} = Set V _{OUT} +1V, 1mA ≤ I _{OUT} ≤30mA				2.55	V
Input Voltage		V_{IN}					6.0	V
Load Regulation		$\frac{\Delta V_{OUT}}{\Delta I_{OUT}}$	V _{IN} = Set V _{OUT} +1V, 1mA ≤ I _{OUT} ≤ 150mA			22	40	mV
Output Current		I _{OUT}	$V_{IN}-V_{OUT} = 1.0V$		150			mA
Supply Current		I _{SS}	V _{IN} = Set V _{OUT} +1V, I _{OUT} = 0mA			75	95	μA
Supply Current (Standby)		I _{ST-BY}	V _{IN} = Set V _{OUT} +1V, V _{CE} = GND			0.1	1.0	μA
Short Current Limit		I _{LIMIT}	V _{OUT} = 0V			40		mA
CE Innut Valtage	High	V_{CEH}					V_{IN}	V
CE Input Voltage Low		V_{CEL}					0.3	V
Output Noise		eN	BW = 10Hz ~ 100kHz			30		μVrms
CE Pull-down Resistance		R_{PD}			0.7	2.0	8.0	МΩ
D		DD	Ripple 0.5Vp-p	f=1kHz		70		dB
Ripple Rejection		RR	$V_{IN} - V_{OUT} = 1.0V, I_{OUT} = 30mA$	f=10kHz		60		dB
Dropout Voltage		V_D	I _{OUT} =150mA			0.28	0.50	V
Line Regulation		$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Set V _{OUT} +0.5V ≤V _{IN} ≤6.0V, I _{OUT} = 30mA			0.02	0.10	%/V
Output Voltage		ΔV_{OUT}	I _{OUT} = 30mA, -40°C ≤ T _{OPR} ≤85°C			±100		nnm/°C
Temperature Coefficient		ΔΤ	10UT - 30111A, -40 C \$ 10PR \$03	C		±100		ppm/°C
On Resistance of Nch for Auto Discharge		R _{LOW}	V _{CE} = 0V			60		Ω

TEST CIRCUIT

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.