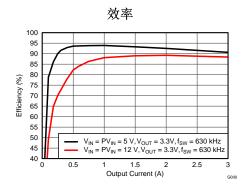


TEXAS Instruments

LMZ31503

ZHCSBF9B -JULY 2013-REVISED APRIL 2018

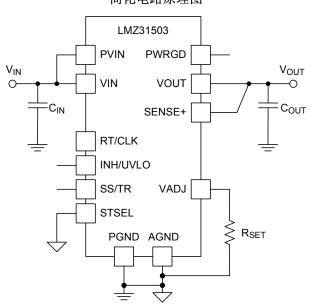

采用 QFN 封装且具备 4.5V 至 14.5V 输入的 LMZ31503 3A 电源模块

1 特性

- 完整的集成式电源解决方案可实现 小尺寸和扁平设计
- 9mm x 15mm x 2.8mm 封装与 LMZ31506 之间实现引脚兼容
- 效率高达 95%
 - 0.8V 至 5.5V 的宽输出电压调节范围,基准精度为 1%
- 可选分离电源轨可实现 低至 1.6V 的输入电压
- 可调开关频率 (330kHz 至 780kHz)
- 与外部时钟同步
- 可调慢速启动
- 输出电压排序/跟踪
- 电源正常输出
- 可编程欠压锁定 (UVLO)
- 过流保护(断续模式)
- 过热保护
- 预偏置输出启动
- 工作温度范围: -40°C 至 +85°C
- 增强的热性能: 13°C/W
- 符合 EN55022 B 类辐射标准
 - 集成屏蔽电感器
- 使用 LMZ31503 并借助 WEBENCH® 电源设计器 创建定制设计方案

2 应用

- 宽带和通信基础设施
- 自动化测试和医疗设备
- 紧凑型 PCI/PCI 快速接口/PXI 快速接口
- DSP 和 FPGA 负载点 应用
- 高密度分布式电源系统


3 说明

LMZ31503 电源模块是一款易于使用的集成式电源解决方案,它在一个扁平的 QFN 封装内整合了一个带有功率 MOSFET 的 3A 直流/直流转换器、一个屏蔽式电感器和多个无源器件。此整体电源解决方案仅需 3 个外部组件,并省去了环路补偿和磁性元件选择过程。

9mm x 15mm x 2.8mm QFN 封装能轻松焊接到印刷电路板上,并且可实现效率高于 95% 的紧凑型负载点设计以及结至环境的热阻抗仅为 13°C/W 的出色功率耗散。在环境温度为 85°C 且无气流的情况下,该器件可提供 3A 的满额输出电流。

LMZ31503 提供了分离式负载点设计的灵活性和功能 集,非常适合为高性能 DSP 和 FPGA 供电。先进的封 装技术可提供一个与标准 QFN 贴装和测试技术兼容的 耐用且可靠的电源解决方案。

简化电路原理图

A

4 Specifications

4.1 Absolute Maximum Ratings⁽¹⁾

over operating temperature range (unless otherwise noted)

		VALUE	UNIT	
	VIN	-0.3 to 16	V	
	PVIN	-0.3 to 16	V	
	INH/UVLO	-0.3 to 6	V	
Lamest Maltaga	VADJ	-0.3 to 3	V	
Input Voltage	PWRGD	-0.3 to 6	V	
	SS/TR	-0.3 to 3	V	
	STSEL	-0.3 to 3	V	
	RT/CLK	-0.3 to 6	V	
Outrut Valtage	PH	-1 to 20	V	
Output Voltage	PH 10ns Transient	-3 to 20	V	
V _{DIFF} (GND to exposed thermal	pad)	-0.2 to 0.2	V	
Carrage Command	RT/CLK	±100	μΑ	
Source Current	РН	Current Limit	Α	
	PH	Current Limit	Α	
Sink Current	PVIN	Current Limit	Α	
	PWRGD	-0.1 to 5	mA	
Operating Junction Temperatur	e	-40 to 125 ⁽²⁾	°C	
Storage Temperature		-65 to 150	°C	
Peak Reflow Case Temperature (3)		245 ⁽⁴⁾	°C	
Maximum Number of Reflows Allowed ⁽³⁾		3 ⁽⁴⁾		
Mechanical Shock M	lil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted	1500	G	
Mechanical Vibration M	lil-STD-883D, Method 2007.2, 20-2000Hz	20		

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ See the temperature derating curves in the Typical Characteristics section for thermal information.

⁽³⁾ For soldering specifications, refer to the Soldering Requirements for BQFN Packages application note.

⁽⁴⁾ Devices with a date code prior to week 14 2018 (1814) have a peak reflow case temperature of 240°C with a maximum of one reflow

4.2 Thermal Information

	LMZ31503	
THERMAL METRIC ⁽¹⁾	RUQ47	UNIT
	47 PINS	
θ_{JA} Junction-to-ambient thermal resistance $^{(2)}$	13	°C/W
Ψ _{JT} Junction-to-top characterization parameter ⁽³⁾	2.5	°C/W
Ψ _{JB} Junction-to-board characterization parameter ⁽⁴⁾	5	°C/W

- For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
- (2) The junction-to-ambient thermal resistance, θ_{JA}, applies to devices soldered directly to a 100 mm x 100 mm double-sided PCB with 1 oz. copper and natural convection cooling. Additional airflow reduces θ_{JA}.
- (3) The junction-to-top characterization parameter, ψ_{JT}, estimates the junction temperature, T_J, of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). T_J = ψ_{JT} * Pdis + T_T; where Pdis is the power dissipated in the device and T_T is the temperature of the top of the device.
- (4) The junction-to-board characterization parameter, ψ_{JB}, estimates the junction temperature, T_J, of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). T_J = ψ_{JB} * Pdis + T_B; where Pdis is the power dissipated in the device and T_B is the temperature of the board 1mm from the device.

4.3 Package Specifications

	UNIT	
Weight		1.26 grams
Flammability	Meets UL 94 V-O	
MTBF Calculated reliability	Per Bellcore TR-332, 50% stress, T _A = 40°C, ground benign	40.1 MHrs

4.4 Electrical Characteristics

Over -40°C to 85°C free-air temperature, PVIN = VIN = 12 V, V_{OUT} = 1.8 V, I_{OUT} = 3A,

 C_{IN1} = 2x 22 μ F ceramic, C_{IN2} = 68 μ F poly-tantalum, C_{OUT1} = 4x 47 μ F ceramic (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
I _{OUT}	Output current	T _A = 85°C, natural conve	ction	0		3	Α
VIN	Input bias voltage range	Over I _{OUT} range		4.5		14.5	V
PVIN	Input switching voltage range	Over I _{OUT} range		1.6 ⁽¹⁾		14.5	V
	\mathrew 12 \ \tag{2} \ \tag{2} \ \tag{3} \ \tag{3} \ \tag{3} \ \tag{4} \ \tag{3} \ \tag{4} \tag{4} \ \tag{4} \tag{4} \ \tag{4} \tag{4} \ \tag{4} \tag{4} \ \tag{4} \t	VIN = increasing			4.0	4.5	
UVLO	VIN Undervoltage lockout	VIN = decreasing		3.5	3.85		V
V _{OUT(adj)}	Output voltage adjust range	Over I _{OUT} range		0.8		5.5	V
	Set-point voltage tolerance	T _A = 25°C, I _{OUT} = 0A				±1.0% ⁽²⁾	
	Temperature variation	-40°C ≤ T _A ≤ +85°C, I _{OUT}	= 0A		±0.3%		
V_{OUT}	Line regulation	Over PVIN range, T _A = 2	5°C, I _{OUT} = 0A		±0.1%		
	Load regulation	Over I _{OUT} range, T _A = 25	°C		±0.1%		
	Total output voltage variation	Includes set-point, line, lo	oad, and temperature variation			±1.5% ⁽²⁾	
		PVIN = VIN = 12 V I _O = 1.5 A	V _{OUT} = 5V, f _{SW} = 780kHz		91.5 %		
			V _{OUT} = 3.3V, f _{SW} = 630kHz		89.0 %		
			V _{OUT} = 2.5V, f _{SW} = 480kHz		86.9 %		
			V _{OUT} = 1.8V, f _{SW} = 480kHz		85.2 %		
			V _{OUT} = 1.2V, f _{SW} = 480kHz		82.1 %		
η	Efficiency		$V_{OUT} = 0.8V, f_{SW} = 330kHz$		78.7 %		
		PVIN = VIN = 5 V	$V_{OUT} = 3.3V, f_{SW} = 630kHz$		93.3 %		
		I _O = 1.5 A	$V_{OUT} = 2.5V, f_{SW} = 480kHz$		91.4 %		
			V _{OUT} = 1.8V, f _{SW} = 480kHz		88.8 %		
			$V_{OUT} = 1.2V, f_{SW} = 480kHz$		85.2 %		
			$V_{OUT} = 0.8V, f_{SW} = 330kHz$		81.8 %		
	Output voltage ripple	20 MHz bandwith			35		mV_{PP}
I _{LIM}	Overcurrent threshold				5.8		Α

⁽¹⁾ The minimum PVIN voltage is 1.6V or $(V_{OUT}+0.7V)$, whichever is greater. VIN must be greater than 4.5V.

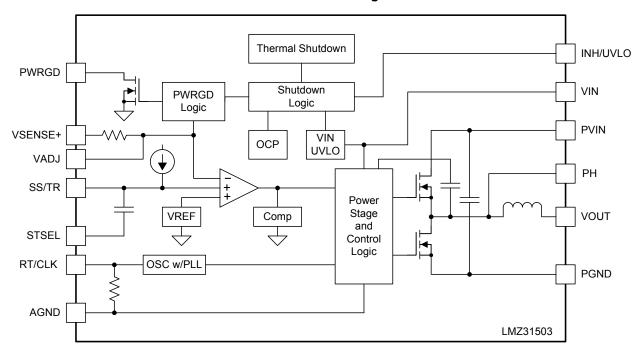
⁽²⁾ The stated limit of the set-point voltage tolerance includes the tolerance of both the internal voltage reference and the internal adjustment resistor. The overall output voltage tolerance will be affected by the tolerance of the external R_{SET} resistor.

Electrical Characteristics (continued)

Over -40°C to 85°C free-air temperature, PVIN = VIN = 12 V, V_{OUT} = 1.8 V, I_{OUT} = 3A, C_{IN1} = 2x 22 μ F ceramic, C_{IN2} = 68 μ F poly-tantalum, C_{OUT1} = 4x 47 μ F ceramic (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
			Recovery time		190		μs
	Transient response	1.0 A/µs load step from 50 to 100% I _{OUT(max)}	V _{OUT} over/undershoot		35		mV
V _{INH-H}	Inhibit Control	Inhibit High Voltage	hibit High Voltage			Open (3)	V
V _{INH-L}	— Inhibit Control	Inhibit Low Voltage		-0.3		1.05	V
	INH Input current	INH < 1.1 V			-1.15		μА
	INH Hysteresis current	INH > 1.26 V			-3.4		μА
I _{I(stby)}	Input standby current	INH pin to AGND			2	4	μΑ
			Good		94%		
	DIM/DOD TI	V _{OUT} rising	Fault		109%		
Power Good	PWRGD Thresholds		Fault		91%		
Good		V _{OUT} falling	Good		106%		
	PWRGD Low Voltage	I(PWRGD) = 2 mA				0.3	V
f _{SW}	Switching frequency	Over VIN and I _{OUT} ranges, RT/CLK pin OPEN		270	330	390	kHz
f _{CLK}	Synchronization frequency			330		780	kHz
V _{CLK-H}	CLK High-Level Threshold	OLK Occident		2.0		5.5	V
V _{CLK-L}	CLK Low-Level Threshold	- CLK Control				0.8	V
D _{CLK}	CLK Duty cycle			20%		80%	
	T. 101 11	Thermal shutdown		160	175		°C
	Thermal Shutdown	Thermal shutdown hysteresis			10		°C
			Ceramic	22 (4)			_
C _{IN}	External input capacitance		Non-ceramic	68 ⁽⁴⁾			μF
		Ceramic		200 (5)		1500	_
C _{OUT}	External output capacitance	Non-ceramic				5000	μF
		Equivalent series resistance (ESR)				35	mΩ

⁽³⁾ This control pin has an internal pullup. If this pin is left open circuit, the device operates when input power is applied. A small low-leakage (<300 nA) MOSFET is recommended for control. See the application section for further guidance.

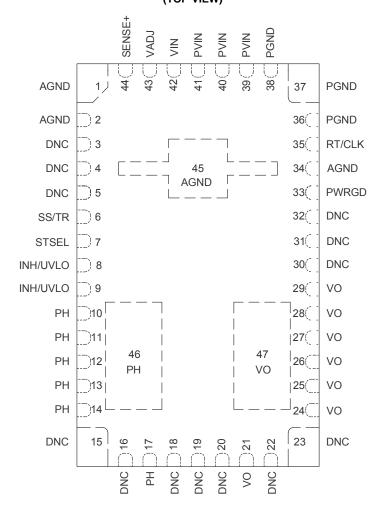

⁽⁴⁾ A minimum of 68 μF of polymer tantalum and/or ceramic external capacitance is required across the input (VIN and PGND connected) for proper operation. Locate the capacitor close to the device. See Table 5 for more details. When operating with split VIN and PVIN rails, place 4.7 μF of ceramic capacitance directly at the VIN pin to PGND.

⁽⁵⁾ The amount of required output capacitance varies depending on the output voltage (see Table 3). The amount of required capacitance must include ceramic capacitance. Locate the capacitance close to the device. Adding additional capacitance close to the load improves the response of the regulator to load transients. See Table 3 and Table 5 more details.

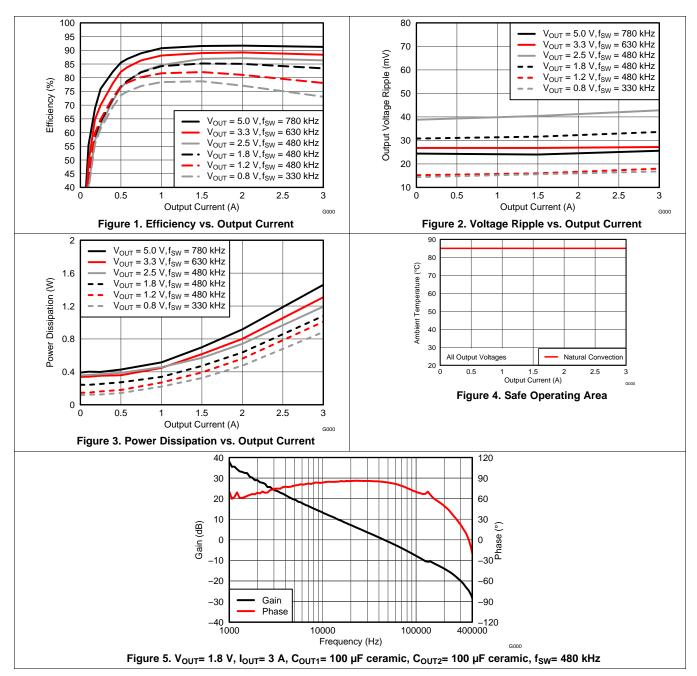
5 Device Information

Functional Block Diagram

Pin Descriptions

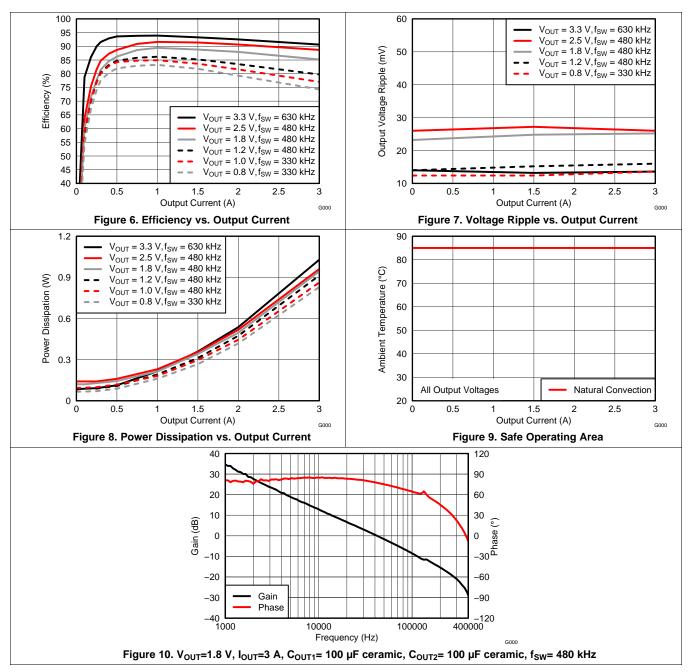

TERI	MINAL	Paragram					
NAME	NO.	DESCRIPTION					
	1						
1 O N I D	2	Zero VDC reference for the analog control circuitry. Connect AGND to PGND at a single point. Connect near					
AGND —	34	the output capacitors. See for a recommended layout.					
	45						
	8	Inhibit and UVLO adjust pin. Use an open drain or open collector output logic to control the INH function. A					
INH/UVLO	9	resistor divider between this pin, AGND and VIN adjusts the UVLO voltage. Tie both pins together when using this control.					
	3						
-	4						
-	5						
-	15						
-	16						
-	18						
DNC	19	Do Not Connect. Do not connect these pins to AGND, to another DNC pin, or to any other voltage. These					
-	20	pins are connected to internal circuitry. Each pin must be soldered to an isolated pad.					
-	22						
-	23						
-	30						
-	31						
	32						
	36						
PGND	37	Common ground connection for the PVIN, VIN, and VOUT power connections. See for a recommended					
-	38	layout.					
	10						
-	11						
-	12						
PH	13	Phase switch node. These pins should be connected to a small copper island under the device for thermal					
-	14	relief. Do not place any external component on this pin or tie it to a pin of another function.					
-	17						
-	46						
PWRGD	33	Power good fault pin. Asserts low if the output voltage is low. A pull-up resistor is required.					
	39						
PVIN	40	Input switching voltage. This pin supplies voltage to the power switches of the converter. See for a recommended layout.					
	41						
RT/CLK	35	This pin automatically selects between RT mode and CLK mode. An external timing resistor adjusts the switching frequency of the device. In CLK mode, the device synchronizes to an external clock.					
SENSE+	44	Remote sense connection. Connect this pin to VOUT at the load for improved regulation. This pin must be connected to VOUT at the load, or at the module pins.					
SS/TR	6	Slow-start and tracking pin. Connecting an external capacitor to this pin adjusts the output voltage rise time. A voltage applied to this pin allows for tracking and sequencing control.					
STSEL	7	Slow-start or track feature select. Connect this pin to AGND to enable the internal SS capacitor with a SS interval of approximately 1.1 ms. Leave this pin open to enable the TR feature.					
VADJ	43	Connecting a resistor between this pin and AGND sets the output voltage.					
VIN	42	Input bias voltage pin. Supplies the control circuitry of the power converter. See for a recommended layout.					

Pin Descriptions (continued)

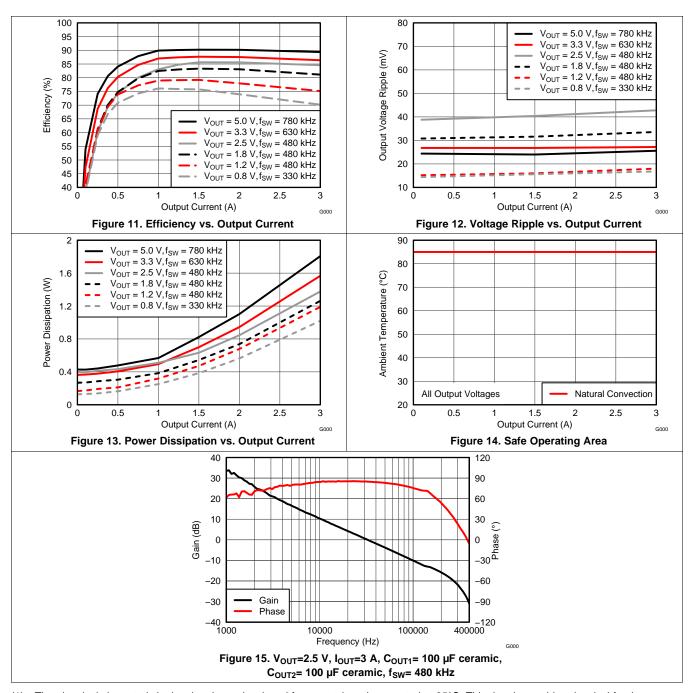

TERMINAL		DESCRIPTION					
NAME	NO.	DESCRIPTION					
	21						
	24						
	25						
VOUT	26	Output valtage. Connect output consciters between these pine and DCND					
VOOT	27	Output voltage. Connect output capacitors between these pins and PGND.					
	28						
	29						
	47						

RUQ PACKAGE 47 PINS (TOP VIEW)

TEXAS INSTRUMENTS


6 Typical Characteristics (PVIN = VIN = 12 V) (1) (2)

- (1) The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the converter. Applies to Figure 1, Figure 2, and Figure 3.
- (2) The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to devices soldered directly to a 100 mm × 100 mm double-sided PCB with 1 oz. copper. Applies to Figure 4.


7 Typical Characteristics (PVIN = VIN = 5 V) (1) (2)

- (1) The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the converter. Applies to Figure 6, Figure 7, and Figure 8.
- (2) The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to devices soldered directly to a 100 mm × 100 mm double-sided PCB with 1 oz. copper. Applies to Figure 9.

8 Typical Characteristics (PVIN = 12 V, VIN = 5 V) (1) (2)

- (1) The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the converter. Applies to Figure 11, Figure 12, and Figure 13.
- (2) The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to devices soldered directly to a 100 mm x 100 mm double-sided PCB with 1 oz. copper. Applies to Figure 14.

9 Application Information

9.1 Adjusting the Output Voltage

The VADJ control sets the output voltage of the LMZ31503. The output voltage adjustment range is from 0.8V to 5.5V. The adjustment method requires the addition of R_{SET} , which sets the output voltage, the connection of SENSE+ to VOUT, and in some cases R_{RT} which sets the switching frequency. The R_{SET} resistor must be connected directly between the VADJ (pin 43) and AGND (pin 45). The SENSE+ pin (pin 44) must be connected to VOUT either at the load for improved regulation or at VOUT of the module. The R_{RT} resistor must be connected directly between the RT/CLK (pin 35) and AGND (pin 34).

Table 1 gives the standard external R_{SET} resistor for a number of common bus voltages, along with the required R_{RT} resistor for that output voltage. For other output voltages, the value of the required resistor can either be calculated using Equation 1, or selected from the values given in Table 2.

Table 1. Standard R_{SET} Resistor Values for Common Output Voltages

RESISTORS	OUTPUT VOLTAGE V _{OUT} (V)							
	0.8	1.0	1.2	1.5	1.8	2.5	3.3	5.0
R _{SET} (kΩ)	open	5.76	2.87	1.62	1.13	0.665	0.453	0.267
R _{RT} (kΩ)	open	open	324	324	324	324	158	105

$$R_{SET} = \frac{1.43}{\left(\left(\frac{V_{OUT}}{0.8}\right) - 1\right)} (k\Omega)$$
(1)

Table 2. Standard R_{SET} Resistor Values

	351									
V _{OUT} (V)	R _{SET} (kΩ)	R _{RT} (kΩ)	f _{SW} (kHz)	V _{OUT} (V)	R _{SET} (kΩ)	$R_{RT}(k\Omega)$	f _{SW} (kHz)			
0.8	open	open	330	3.2	0.475	191	580			
0.9	11.3	open	330	3.3	0.453	158	630			
1.0	5.76	open	330	3.4	0.442	158	630			
1.1	3.83	open	330	3.5	0.422	158	630			
1.2	2.87	324	480	3.6	0.402	158	630			
1.3	2.26	324	480	3.7	0.392	158	630			
1.4	1.91	324	480	3.8	0.374	137	680			
1.5	1.62	324	480	3.9	0.365	137	680			
1.6	1.43	324	480	4.0	0.357	137	680			
1.7	1.27	324	480	4.1	0.348	137	680			
1.8	1.13	324	480	4.2	0.332	118	730			
1.9	1.02	324	480	4.3	0.324	118	730			
2.0	0.953	324	480	4.4	0.316	118	730			
2.1	0.866	324	480	4.5	0.309	118	730			
2.2	0.806	324	480	4.6	0.301	118	730			
2.3	0.750	324	480	4.7	0.294	118	730			
2.4	0.715	324	480	4.8	0.287	105	780			
2.5	0.665	324	480	4.9	0.280	105	780			
2.6	0.634	237	530	5.0	0.267	105	780			
2.7	0.604	237	530	5.1	0.267	105	780			
2.8	0.562	237	530	5.2	0.261	105	780			
2.9	0.536	237	530	5.3	0.255	105	780			
3.0	0.511	191	580	5.4	0.249	105	780			
3.1	0.499	191	580	5.5	0.243	105	780			
				,						

9.2 Capacitor Recommendations for the LMZ31503 Power SupplY

9.2.1 Capacitor Technologies

9.2.1.1 Electrolytic, Polymer-Electrolytic Capacitors

When using electrolytic capacitors, high-quality, computer-grade electrolytic capacitors are recommended. Polymer-electrolytic type capacitors are recommended for applications where the ambient operating temperature is less than 0°C. The Sanyo OS-CON capacitor series is suggested due to the lower ESR, higher rated surge, power dissipation, ripple current capability, and small package size. Aluminum electrolytic capacitors provide adequate decoupling over the frequency range of 2 kHz to 150 kHz, and are suitable when ambient temperatures are above 0°C.

9.2.1.2 Ceramic Capacitors

The performance of aluminum electrolytic capacitors is less effective than ceramic capacitors above 150 kHz. Multilayer ceramic capacitors have a low ESR and a resonant frequency higher than the bandwidth of the regulator. They can be used to reduce the reflected ripple current at the input as well as improve the transient response of the output.

9.2.1.3 Tantalum, Polymer-Tantalum Capacitors

Polymer-tantalum type capacitors are recommended for applications where the ambient operating temperature is less than 0°C. The Sanyo POSCAP series and Kemet T530 capacitor series are recommended rather than many other tantalum types due to their lower ESR, higher rated surge, power dissipation, ripple current capability, and small package size. Tantalum capacitors that have no stated ESR or surge current rating are not recommended for power applications.

9.2.2 Input Capacitor

The LMZ31503 requires a minimum input capacitance of 68 μ F of ceramic and/or polymer-tantalum capacitors. The ripple current rating of the capacitor must be at least 450 mArms. Table 5 includes a preferred list of capacitors by vendor.

9.2.3 Output Capacitor

The required output capacitance is determined by the output voltage of the LMZ31503. See Table 3 for the amount of required capacitance. The required output capacitance must be comprised of all ceramic capacitors. When adding additional non-ceramic bulk capacitors, low-ESR devices like the ones recommended in Table 5 are required. The required capacitance above the minimum is determined by actual transient deviation requirements. See Table 4 for typical transient response values for several output voltage, input voltage and capacitance combinations. Table 5 includes a preferred list of capacitors by vendor.

Table 3. Required Output Capacitance

V _{OUT} RA	NGE (V)	MINIMUM REQUIRED C (VE)
MIN	MAX	MINIMUM REQUIRED C _{OUT} (μF)
0.8	< 1.2	6x 47 μF ceramic
1.2	< 3.0	4x 47 μF ceramic
3.0	< 4.0	2x 47 μF ceramic
4.0	5.5	47 μF ceramic

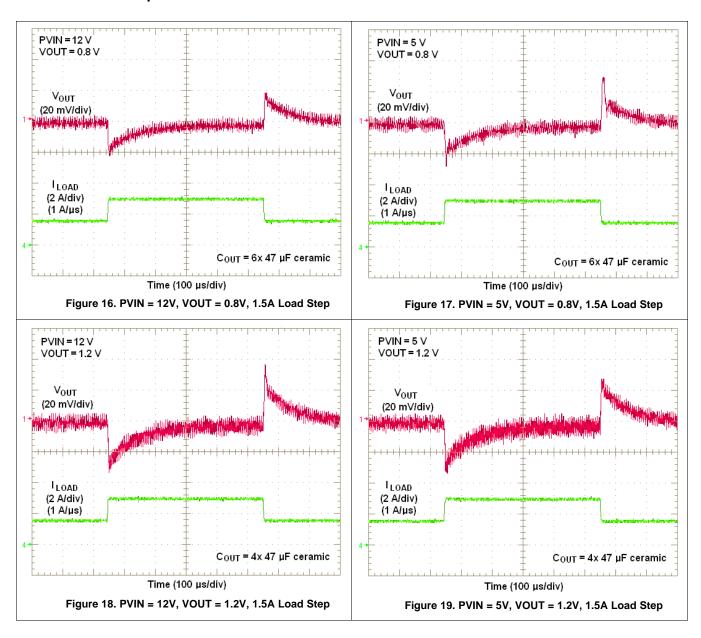
Table 4. Output Voltage Transient Response

C_{IN1} = 22 μ F	C _{IN1} = 22 μF CERAMIC, C _{IN2} = 68 μF POSCAP, LOAD STEP = 1.5 A, 1 A/μs									
V _{OUT} (V)	PV _{IN} (V)	C _{OUT1} Ceramic	C _{OUT2} BULK	VOLTAGE DEVIATION (mV)	PEAK-PEAK (mV)	RECOVERY TIME (µs)				
	5	6x 47 μF	None	25	55	170				
0.8	5	6x 47 μF	330 μF	15	30	160				
0.0	12	6x 47 μF	None	20	35	180				
	12	6x 47 μF	330 μF	15	30	170				
	5	6x 47 μF	None	20	40	170				
1.0	5	6x 47 μF	330 µF	15	30	170				
1.0	12	6x 47 μF	None	20	45	180				
	12	6x 47 μF	330 μF	15	30	170				
	5	4x 47 μF	None	30	55	170				
1.2	5	4x 47 μF	220 μF	25	45	170				
1.2	12	4x 47 μF	None	30	55	180				
	12	4x 47 μF	220 μF	25	50	170				
		4x 47 μF	None	35	65	180				
4.0	5	4x 47 μF	220 μF	30	55	180				
1.8	40	4x 47 μF	None	35	65	190				
	12	4x 47 μF	220 μF	30	55	180				
	5	2x 47 μF	None	65	130	190				
2.2	5	2x 47 μF	100 μF	55	110	190				
3.3	12	2x 47 μF	None	65	130	200				
	12	2x 47 μF	100 μF	60	120	200				
5.0	12	1x 47 μF	None	100	200	210				
5.0	12	1x 47 μF	100 μF	85	170	210				

Table 5. Recommended Input/Output Capacitors (1)

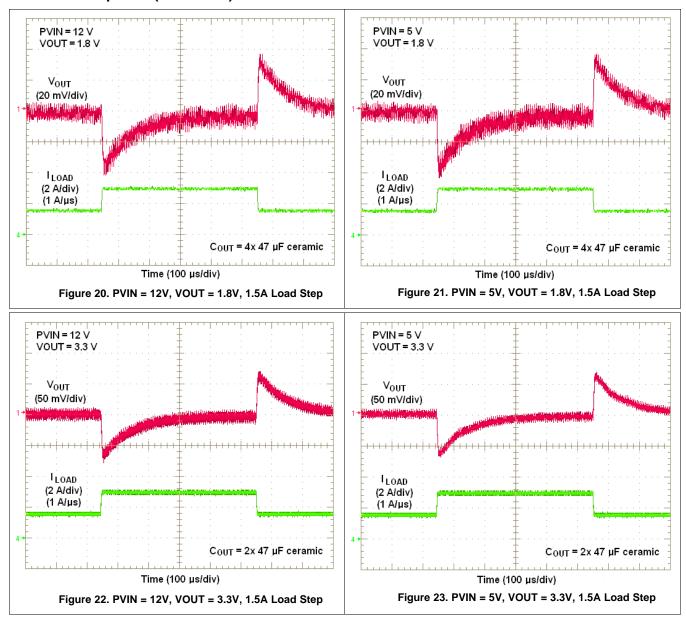
			CAPA	CAPACITOR CHARACTERISTICS				
VENDOR	SERIES	PART NUMBER	WORKING VOLTAGE (V)	CAPACITANCE (µF)	ESR ⁽²⁾ (mΩ)			
Murata	X5R	GRM32ER61E226K	16	22	2			
TDK	X5R	C3225X5R0J476K	6.3	47	2			
Murata	X5R	GRM32ER60J476M	6.3	47	2			
Sanyo	POSCAP	16TQC68M	16	68	50			
Kemet	T520	T520V107M010ASE025	10	100	25			
Sanyo	POSCAP	6TPE100MI	6.3	100	25			
Sanyo	POSCAP	2R5TPE220M7	2.5	220	7			
Kemet	T530	T530D227M006ATE006	6.3	220	6			
Kemet	T530	T530D337M006ATE010	6.3	330	10			
Sanyo	POSCAP	2TPF330M6	2.0	330	6			
Sanyo	POSCAP	6TPE330MFL	6.3	330	15			

(1) Capacitor Supplier Verification


Please verify availability of capacitors identified in this table. RoHS, Lead-free and Material Details

Please consult capacitor suppliers regarding material composition, RoHS status, lead-free status, and manufacturing process requirements.

(2) Maximum ESR @ 100kHz, 25°C.



9.3 Transient Response

Transient Response (continued)

9.4 Application Schematics

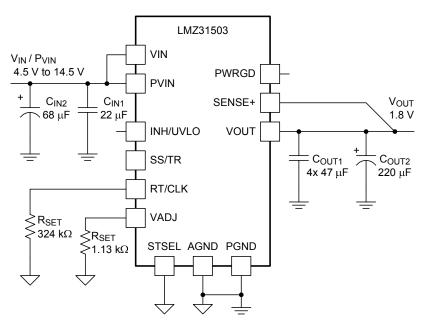


Figure 24. Typical Schematic PVIN = VIN = 4.5 V to 14.5 V, VOUT = 1.8 V

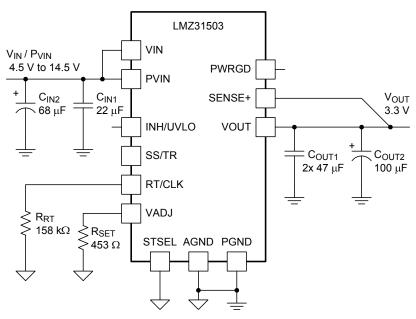


Figure 25. Typical Schematic PVIN = VIN = 4.5 V to 14.5 V, VOUT = 3.3 V

Application Schematics (continued)

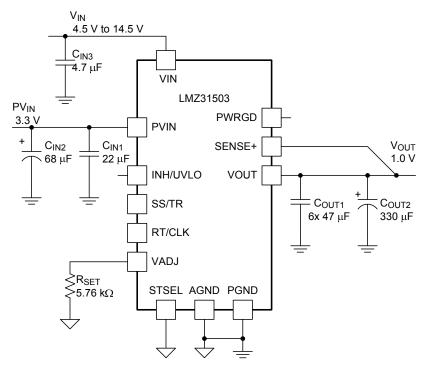


Figure 26. Typical Schematic PVIN = 3.3 V, VIN = 4.5 V to 14.5 V, VOUT = 1.0 V

9.5 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LMZ31503 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

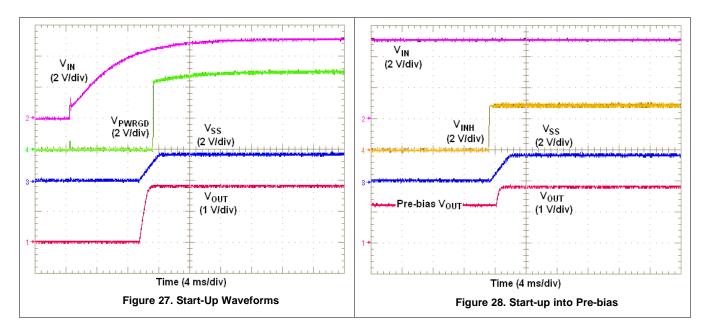
- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- · Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

9.6 VIN and PVIN Input Voltage

The LMZ31503 allows for a variety of applications by using the VIN and PVIN pins together or separately. The VIN voltage supplies the internal control circuits of the device. The PVIN voltage provides the input voltage to the power converter system.

If tied together, the input voltage for the VIN pin and the PVIN pin can range from 4.5 V to 14.5 V. If using the VIN pin separately from the PVIN pin, the VIN pin must be between 4.5 V and 14.5 V, and the PVIN pin can range from as low as 1.6 V to 14.5 V. A voltage divider connected to the INH/UVLO pin can adjust the either input voltage UVLO appropriately. See the Programmable Undervoltage Lockout (UVLO) section of this datasheet for more information.


9.7 Power Good (PWRGD)

The PWRGD pin is an open drain output. Once the voltage on the SENSE+ pin is between 94% and 106% of the set voltage, the PWRGD pin pull-down is released and the pin floats. The recommended pull-up resistor value is between 10 k Ω and 100 k Ω to a voltage source that is 5.5 V or less. The PWRGD pin is in a defined state once VIN is greater than 1.0 V, but with reduced current sinking capability. The PWRGD pin achieves full current sinking capability once the VIN pin is above 4.5V. The PWRGD pin is pulled low when the voltage on SENSE+ is lower than 91% or greater than 109% of the nominal set voltage. Also, the PWRGD pin is pulled low if the input UVLO or thermal shutdown is asserted, the INH pin is pulled low, or the SS/TR pin is below 1.4 V.

9.8 Power-Up Characteristics

When configured as shown in the front page schematic, the LMZ31503 produces a regulated output voltage following the application of a valid input voltage. During the power-up, internal soft-start circuitry slows the rate that the output voltage rises, thereby limiting the amount of in-rush current that can be drawn from the input source. The soft-start circuitry introduces a short time delay from the point that a valid input voltage is recognized. Figure 27 shows the start-up waveforms for a LMZ31503, operating from a 5-V input (PVIN=VIN) and with the output voltage adjusted to 1.8 V. Figure 28 shows the start-up waveforms for a LMZ31503 starting up into a pre-biased output voltage. The waveforms were measured with a 2-A constant current load.

9.9 Pre-Biased Start-Up

The LMZ31503 has been designed to prevent discharging a pre-biased output. During monotonic pre-biased startup, the LMZ31503 does not allow current to sink until the SS/TR pin voltage is higher than 1.4 V.

9.10 Remote Sense

The SENSE+ pin must be connected to V_{OUT} at the load, or at the device pins.

Connecting the SENSE+ pin to V_{OUT} at the load improves the load regulation performance of the device by allowing it to compensate for any I-R voltage drop between its output pins and the load. An I-R drop is caused by the high output current flowing through the small amount of pin and trace resistance. This should be limited to a maximum of 300 mV.

NOTE

The remote sense feature is not designed to compensate for the forward drop of nonlinear or frequency dependent components that may be placed in series with the converter output. Examples include OR-ing diodes, filter inductors, ferrite beads, and fuses. When these components are enclosed by the SENSE+ connection, they are effectively placed inside the regulation control loop, which can adversely affect the stability of the regulator.

9.11 Output On/Off Inhibit (INH)

The INH pin provides electrical on/off control of the device. Once the INH pin voltage exceeds the threshold voltage, the device starts operation. If the INH pin voltage is pulled below the threshold voltage, the regulator stops switching and enters low quiescent current state.

The INH pin has an internal pull-up current source, allowing the user to float the INH pin for enabling the device. If an application requires controlling the INH pin, use an open drain/collector device, or a suitable logic gate to interface with the pin.

Figure 29 shows the typical application of the inhibit function. The Inhibit control has its own internal pull-up to VIN potential. An open-collector or open-drain device is recommended to control this input.

Turning Q1 on applies a low voltage to the inhibit control (INH) pin and disables the output of the supply, shown in Figure 30. If Q1 is turned off, the supply executes a soft-start power-up sequence, as shown in Figure 31. A regulated output voltage is produced within 10 ms. The waveforms were measured with a 2-A constant resistance load.

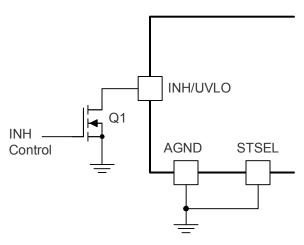
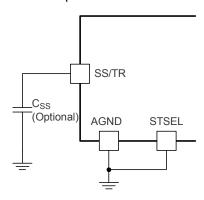


Figure 29. Typical Inhibit Control

9.12 Slow Start (SS/TR)

Connecting the STSEL pin to AGND and leaving SS/TR pin open enables the internal SS capacitor with a slow start interval of approximately 1.1 ms. Adding additional capacitance between the SS pin and AGND increases the slow start time. Table 6 shows an additional SS capacitor connected to the SS/TR pin and the STSEL pin connected to AGND. See Table 6 below for SS capacitor values and timing interval.



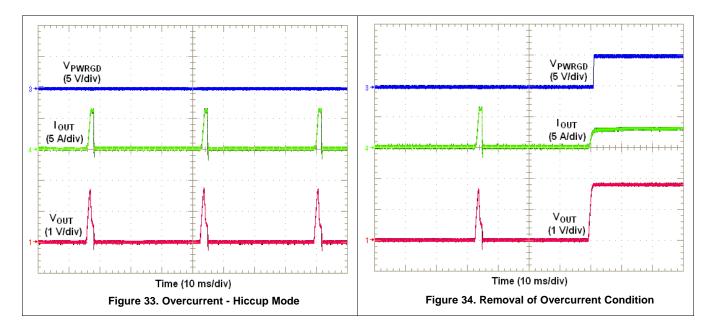

Figure 32. Slow-Start Capacitor (C_{SS}) and STSEL Connection

Table 6. Slow-Start Capacitor Values and Slow-Start Time

C _{SS} (pF)	open	2200	4700	10000	15000	22000	25000
SS Time (msec)	1.1	1.9	2.8	4.6	6.4	8.8	9.8

9.13 Overcurrent Protection

For protection against load faults, the LMZ31503 incorpoates output overcurrent protection. Applying a load that exceeds the regulator's overcurrent threshold causes the regulated output to shut down. Following shutdown, the output voltage periodically attempts to recover by initiating a soft-start power-up. This is described as a *hiccup* mode of operation, whereby the module continues in a cycle of successive shutdown and power up until the load fault is removed, as shown in Figure 33. During this period, the average current flowing into the fault is significantly reduced. Once the fault is removed, the module automatically recovers and returns to normal operation, as shown in Figure 34.

9.14 Synchronization (CLK)

An internal phase locked loop (PLL) has been implemented to allow synchronization between 330 kHz and 780 kHz, and to easily switch from RT mode to CLK mode. To implement the synchronization feature, connect a square wave clock signal to the RT/CLK pin with a duty cycle between 20% to 80%. The clock signal amplitude must transition lower than 0.8 V and higher than 2.0 V. The start of the switching cycle is synchronized to the falling edge of RT/CLK pin. In applications where both RT mode and CLK mode are needed, the device can be configured as shown in .

Before the external clock is present, the device works in RT mode and the switching frequency is set by RT resistor (R_{RT}). When the external clock is present, the CLK mode overrides the RT mode. The first time the CLK pin is pulled above the RT/CLK high threshold (2.0 V), the device switches from RT mode to th CLK mode and the RT/CLK pin becomes high impedance as the PLL starts to lock onto the frequency of the external clock. It is not recommended to switch from CLK mode back to RT mode because the internal switching frequency drops to 100 kHz and may shut-down due to internal protection circuits before returning to the switching frequency set by the RT resistor.

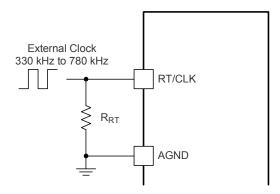
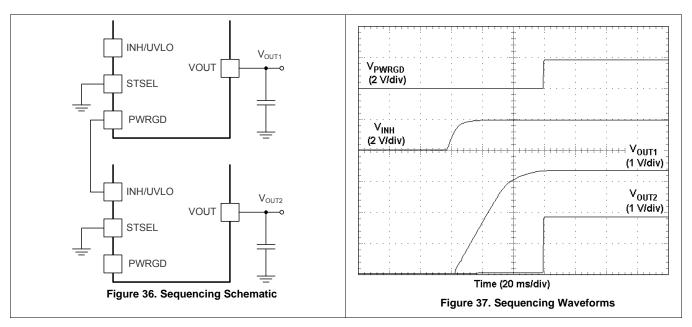
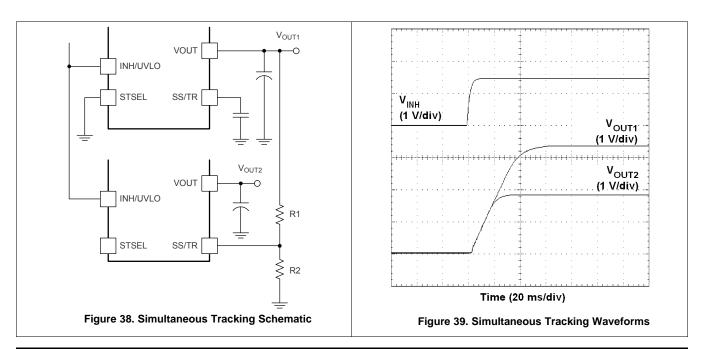


Figure 35. CLK/RT Configuration

The synchronization frequency must be selected based on the output voltages of the devices being synchronized. Table 7 shows the allowable frequencies for a given range of output voltages. For the most efficient solution, always synchronize to the lowest allowable frequency. For example, an application requires synchronizing three LMZ31503 devices with output voltages of 1.2 V, 1.8 V and 2.5 V, all powered from PVIN = 12 V. Table 7 shows that all three output voltages can be synchronized to frquencies between 480 kHz to 630 kHz. For best efficiency, choose 480 kHz as the sychronization frequency.


Table 7. Synchronization Frequency vs Output Voltage

		PVIN	= 12 V	PVIN	= 5 V		
SYNCHRONIZATION FREQUENCY (kHz)	R_{RT} (k Ω)	V _{OUT} RA	NGE (V)	V _{OUT} RANGE (V)			
TREGOLITOT (IIII2)		MIN	MAX	MIN	MAX		
330	OPEN	0.8	1.5				
380	1000	0.8	1.7				
430	499	0.8	2.1				
480	324	0.9	2.5				
530	237	1.0	2.9	0.8	4.2		
580	191	1.1	3.2	0.8	4.3		
630	158	1.2	3.7				
680	137	1.3	4.1				
730	118	1.4	4.7				
780	105	1.5	5.5				


9.15 Sequencing (SS/TR)

Many of the common power supply sequencing methods can be implemented using the SS/TR, INH and PWRGD pins. The sequential method is illustrated in Figure 36 using two LMZ31503 devices. The PWRGD pin of the first device is coupled to the INH pin of the second device which enables the second power supply once the primary supply reaches regulation. Figure 37 shows sequential turn-on waveforms of two LMZ31503 devices.

Simultaneous power supply sequencing can be implemented by connecting the resistor network of R1 and R2 shown in Figure 38 to the output of the power supply that needs to be tracked or to another voltage reference source. Figure 39 shows simultaneous turn-on waveforms of two LMZ31503 devices. Use Equation 2 and Equation 3 to calculate the values of R1 and R2.

R1 =
$$\frac{(V_{OUT2} \times 12.6)}{0.8} (k\Omega)$$
 R2 = $\frac{0.8 \times R1}{(V_{OUT2} - 0.8)} (k\Omega)$ (3)

9.16 Programmable Undervoltage Lockout (UVLO)

The LMZ31503 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 4.5 V(max) with a typical hysteresis of 150 mV.

If an application requires either a higher UVLO threshold on the VIN pin or a higher UVLO threshold for a combined VIN and PVIN, then the UVLO pin can be configured as shown in Figure 40 or Figure 41. Table 8 lists standard values for $R_{\rm UVI O2}$ and $R_{\rm UVI O2}$ to adjust the VIN UVLO voltage up.

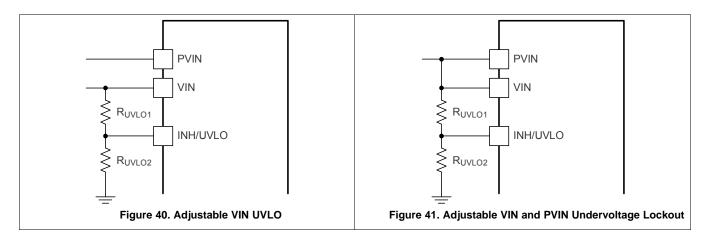


Table 8. Standard Resistor values for Adjusting VIN UVLO

VIN UVLO (V)	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
R_{UVLO1} ($k\Omega$)	68.1	68.1	68.1	68.1	68.1	68.1	68.1	68.1	68.1	68.1	68.1
R_{UVLO2} (k Ω)	21.5	18.7	16.9	15.4	14.0	13.0	12.1	11.3	10.5	9.76	9.31
Hysteresis (mV)	400	415	430	450	465	480	500	515	530	550	565

For a split rail application, if a secondary UVLO on PVIN is required, VIN must be \geq 4.5V. Figure 42 shows the PVIN UVLO configuration. Use Table 9 to select R_{UVLO1} and R_{UVLO2} for PVIN. If PVIN UVLO is set for less than 3.0 V, a 5.1-V zener diode should be added to clamp the voltage on the UVLO pin below 6 V.

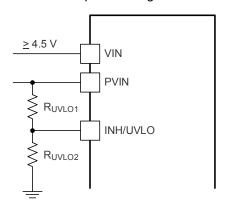
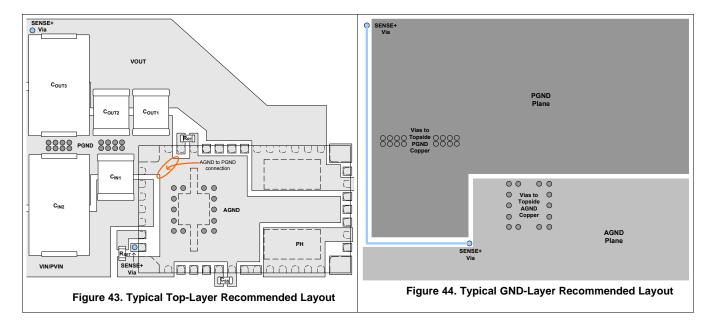


Figure 42. Adjustable PVIN Undervoltage Lockout, (VIN ≥4.5 V)

Table 9. Standard Resistor Values for Adjusting PVIN UVLO, (VIN ≥4.5 V)

PVIN UVLO (V)	2.0	2.5	3.0	3.5	4.0	4.5	
R_{UVLO1} (k Ω)	68.1	68.1	68.1	68.1	68.1	68.1	
$R_{UVLO2}\left(k\Omega\right)$	95.3	60.4	44.2	34.8	28.7	24.3	For higher PVIN UVLO voltages see Table UV for resistor values
Hysteresis (mV)	300	315	335	350	365	385	Table 5 v.o. Todistor valdes


9.17 Thermal Shutdown

The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds 175°C typically. The device reinitiates the power up sequence when the junction temperature drops below 165°C typically.

9.18 Layout Considerations

To achieve optimal electrical and thermal performance, an optimized PCB layout is required. Figure 43 and Figure 44 show two layers of a typical PCB layout. Some considerations for an optimized layout are:

- Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal stress.
- Place ceramic input and output capacitors close to the module pins to minimize high frequency noise.
- · Locate additional output capacitors between the ceramic capacitor and the load.
- Place a dedicated AGND copper area beneath the LMZ31503.
- Isolate the PH copper area from the VOUT copper area using the AGND copper area.
- Connect the AGND and PGND copper area at one point; near the output capacitors.
- Place R_{SET}, R_{RT}, and C_{SS} as close as possible to their respective pins.
- Use multiple vias to connect the power planes to internal layers.

9.19 EMI

The LMZ31503 is compliant with EN55022 Class B radiated emissions. Figure 45 and Figure 46 show typical examples of radiated emissions plots for the LMZ31503 operating from 5V and 12V respectively. Both graphs include the plots of the antenna in the horizontal and vertical positions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (June 2017) to Revision B	Page
● 添加 LMZ31503 的 WEBENCH® 设计链接	1
Increased the peak reflow temperature and maximum number of reflows to JEDEC specifications for improved manufacturability	2
• 添加器件支持 部分	
• 添加机械、封装和可订购信息 部分	29
Changes from Original (July 2013) to Revision A	Page
Added peak reflow and maximum number of reflows information	2

11 器件和文档支持

11.1 器件支持

11.1.1 开发支持

11.1.1.1 使用 WEBENCH® 工具创建定制设计

单击此处,使用 LMZ31503 器件并借助 WEBENCH® 电源设计器创建定制设计方案。

- 1. 首先键入输入电压 (V_{IN}) 、输出电压 (V_{OUT}) 和输出电流 (I_{OUT}) 要求。
- 2. 使用优化器拨盘优化关键参数设计,如效率、封装和成本。
- 3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。

WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。

在多数情况下,可执行以下操作:

- 运行电气仿真,观察重要波形以及电路性能
- 运行热性能仿真,了解电路板热性能
- 将定制原理图和布局方案导出至常用 CAD 格式
- 打印设计方案的 PDF 报告并与同事共享

有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。

11.2 文档支持

11.2.1 相关文档

请参阅如下相关文档:

BQFN 封装的焊接要求

11.3 接收文档更新通知

要接收文档更新通知,请导航至 Tl.com.cn 上的器件产品文件夹。单击右上角的*通知我* 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 设计支持

11.5 商标

E2E is a trademark of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可 能会损坏集成电路。

▲『☆ ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。

11.7 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。

PACKAGE OPTION ADDENDUM

4-Jun-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMZ31503RUQR	ACTIVE	B1QFN	RUQ	47	500	RoHS Exempt & Green	NIPDAU	Level-3-245C-168 HR	-40 to 85	LMZ31503	Samples
LMZ31503RUQT	ACTIVE	B1QFN	RUQ	47	250	RoHS Exempt & Green	NIPDAU	Level-3-245C-168 HR	-40 to 85	LMZ31503	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

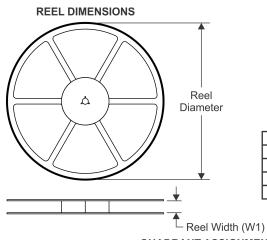
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

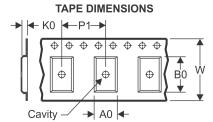
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

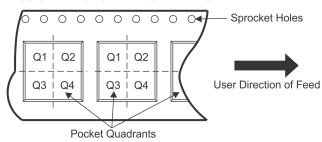
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



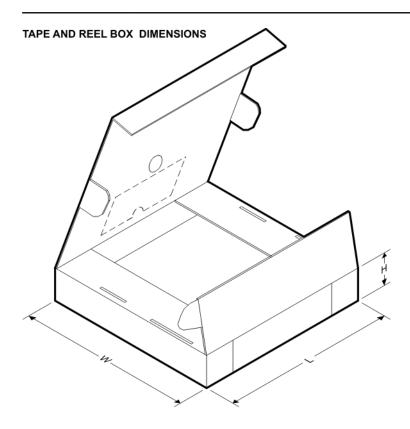

4-Jun-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Mar-2021


TAPE AND REEL INFORMATION

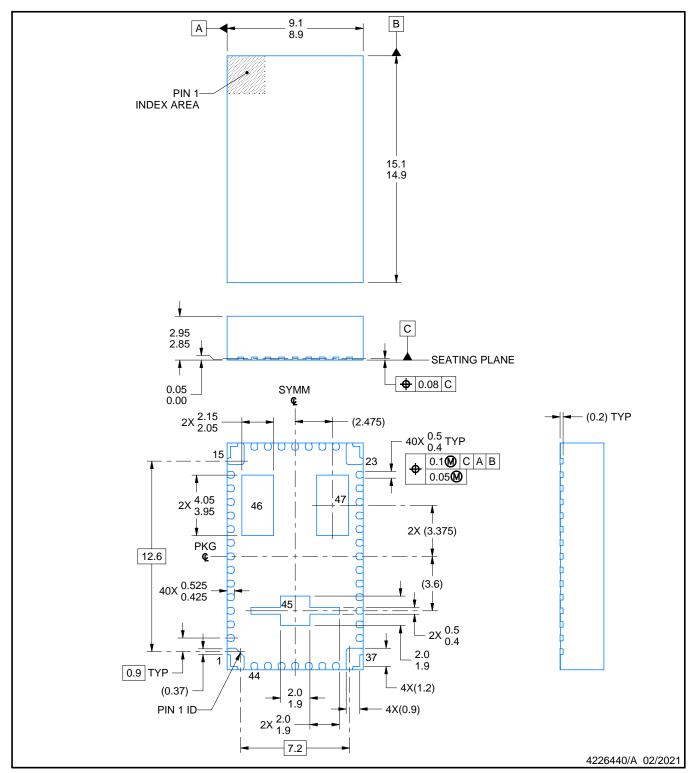
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMZ31503RUQR	B1QFN	RUQ	47	500	330.0	24.4	9.35	15.35	3.1	16.0	24.0	Q1
LMZ31503RUQT	B1QFN	RUQ	47	250	330.0	24.4	9.35	15.35	3.1	16.0	24.0	Q1

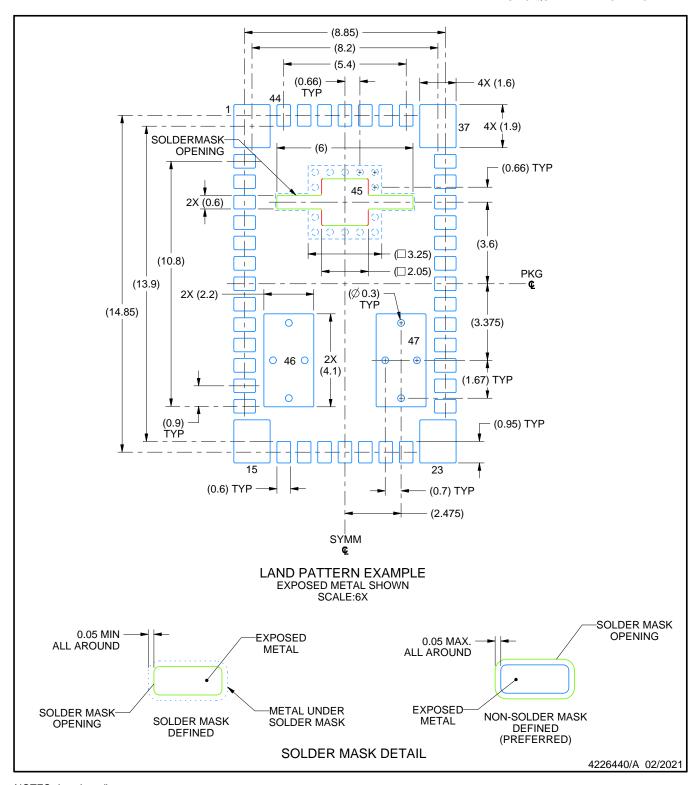
www.ti.com 10-Mar-2021



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMZ31503RUQR	B1QFN	RUQ	47	500	383.0	353.0	58.0
LMZ31503RUQT	B1QFN	RUQ	47	250	383.0	353.0	58.0

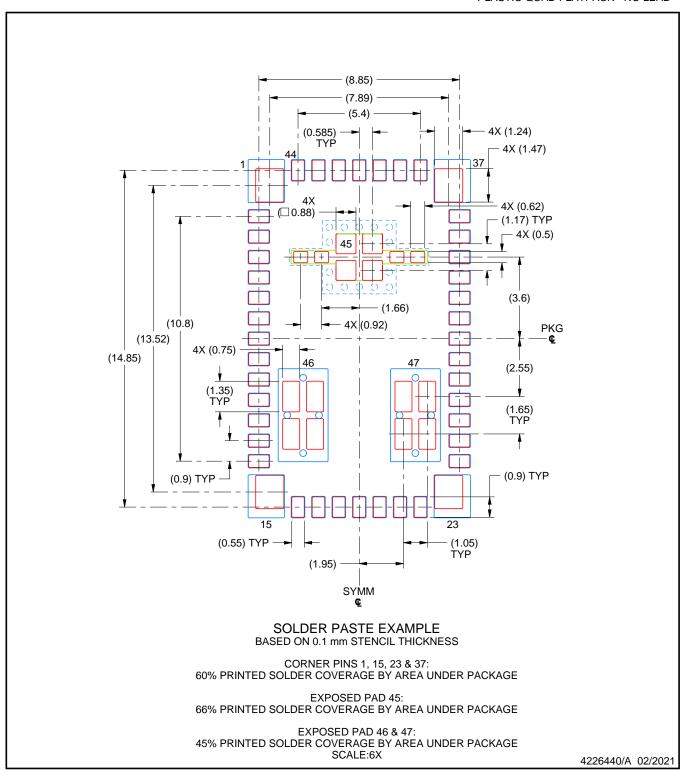
PLASTIC QUAD FLATPACK - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司