











DAC5675A-SP

SGLS387G -JULY 2007-REVISED MARCH 2015

## DAC5675A-SP Radiation-Tolerant, 14-Bit, 400-MSPS Digital-to-Analog Converter

#### Features

- QMLV (QML Class V) MIL-PRF-38535 Qualified, SMD 5962-07204
  - 5962-0720401VXC Qualified over the Military Temperature Range (-55°C to 125°C)
  - 5962-0720402VXC Qualified over Reduced Temperature Range (-55°C to 115°C) for Improved Dynamic Performance
- High-Performance 52-Pin Ceramic Quad Flat Pack (HFG)
- 400-MSPS Update Rate
- LVDS-Compatible Input Interface
- Spurious-Free Dynamic Range (SFDR) to Nyquist
  - 69 dBc at 70 MHz IF, 400 MSPS
- W-CDMA Adjacent Channel Power Ratio (ACPR)
  - 73 dBc at 30.72 MHz IF, 122.88 MSPS
  - 71 dBc at 61.44 MHz IF, 245.76 MSPS
- Differential Scalable Current Outputs: 2 to 20 mA
- On-Chip 1.2-V Reference
- Single 3.3-V Supply Operation
- Power Dissipation: 660 mW at  $f_{CLK} = 400$  MSPS,  $f_{\text{OUT}} = 20 \text{ MHz}$

#### 2 Applications

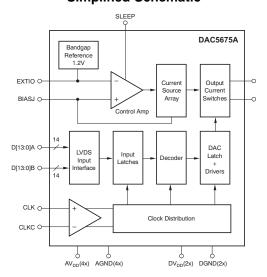
- Radiation Hardened Digital to Analog (DAC) **Applications**
- Space Satellite RF Data Transmission
- Cellular Base Transceiver Station Transmit Channel:
  - CDMA: WCDMA, CDMA2000, IS-95
  - TDMA: GSM, IS-136, EDGE/GPRS
  - Supports Single-Carrier and Multicarrier **Applications**
- Engineering Evaluation (/EM) Samples are Available (1)

These units are intended for engineering evaluation only. They are processed to a non-compliant flow (for example, no burn-in) and are tested to temperature rating of 25°C only. These units are not suitable for qualification, production, radiation testing or flight use. Parts are not warranted for performance on full MIL specified temperature range of -55°C to 125°C or operating life.

#### 3 Description

The DAC5675A-SP is a radiation-tolerant, 14-bit resolution high-speed digital-to-analog converter (DAC) primarily suited for space satellite applications. The DAC5675A-SP is designed for high-speed digital transmission in wired and communication systems, high-frequency direct digital synthesis (DDS), and waveform reconstruction in test and measurement applications. The DAC5675A-SP has excellent SFDR at high intermediate frequencies, makes it well suited for multicarrier transmission in TDMA and CDMA based cellular base transceiver stations (BTSs).

The DAC5675A-SP operates from a single supply voltage of 3.3 V. Power dissipation is 660 mW at  $f_{\rm CLK}$  = 400 MSPS,  $f_{\rm OUT}$  = 70 MHz. The DAC5675A-SP provides a nominal full-scale differential current output of 20 mA, supporting both single-ended and differential applications. The output current can be directly fed to the load with no additional external output buffer required. The output is referred to the analog supply voltage AV<sub>DD</sub>.


The DAC5675A-SP includes a low-voltage differential signaling (LVDS) interface for high-speed digital data input. LVDS features a low differential voltage swing with a low constant power consumption across frequency, allowing for high-speed data transmission with low noise levels (low electromagnetic interference (EMI)).

#### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE       | BODY SIZE (NOM)     |
|-------------|---------------|---------------------|
| DAC5675A-SP | HFG (52 CQFP) | 19.05 mm × 19.05 mm |

(1) For all available packages, see the orderable addendum at the end of the data sheet.

#### Simplified Schematic





| <b>T</b> - | <b>I</b> _ |    | _ £      | <b>^</b> - | nte  | 4    |
|------------|------------|----|----------|------------|------|------|
| 12         | n          | 10 | $\alpha$ |            | nto  | ntc  |
| 10         | •          | 16 | OI.      | $\sim$     | IIIC | 1113 |

| 1 | Features 1                                                    |    | 8.1 Overview                         | 14               |
|---|---------------------------------------------------------------|----|--------------------------------------|------------------|
| 2 | Applications 1                                                |    | 8.2 Functional Block Diagram         | 14               |
| 3 | Description 1                                                 |    | 8.3 Feature Description              | 14               |
| 4 | Revision History2                                             |    | 8.4 Device Functional Modes          | <mark>2</mark> 0 |
| 5 | Description (continued)                                       | 9  | Application and Implementation       | <mark>2</mark> 1 |
| 6 | Pin Configuration and Functions 4                             |    | 9.1 Application Information          | <mark>2</mark> 1 |
| 7 | _                                                             |    | 9.2 Typical Application              | <mark>2</mark> 1 |
| , | Specifications 5                                              | 10 | Power Supply Recommendations         | <mark>2</mark> 4 |
|   | 7.1 Absolute Maximum Ratings 5                                | 11 | Layout                               | 2 <sup>4</sup>   |
|   | 7.2 ESD Ratings                                               |    | 11.1 Layout Guidelines               |                  |
|   | 7.3 Recommended Operating Conditions                          |    | 11.2 Layout Example                  |                  |
|   | 7.4 Thermal Information                                       |    | 11.3 Thermal Considerations          |                  |
|   | 7.5 DC Electrical Characteristics (Unchanged After 100 kRad)6 | 12 | Device and Documentation Support     |                  |
|   | 7.6 AC Electrical Characteristics (Unchanged After 100        |    | 12.1 Device Support                  |                  |
|   | kRad)8                                                        |    | 12.2 Trademarks                      |                  |
|   | 7.7 Digital Specifications (Unchanged After 100 kRad) 10      |    | 12.3 Electrostatic Discharge Caution |                  |
|   | 7.8 Electrical Characteristics 11                             |    | 12.4 Glossary                        |                  |
|   | 7.9 Typical Characteristics                                   | 13 | Mechanical, Packaging, and Orderable |                  |
| 8 | Detailed Description                                          |    | Information                          | 27               |
|   | •                                                             |    |                                      |                  |

## 4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

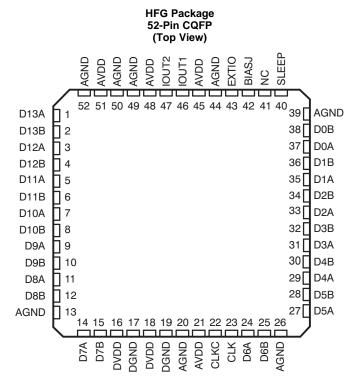
| Cł       | nanges from Revision F (January 2014) to Revision G                                                                                                                                                                                                                                 | Page |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| •        | Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section |      |
| <u>•</u> | Updated supply voltage absolute maximum ratings for AV <sub>DD</sub> to DV <sub>DD</sub>                                                                                                                                                                                            | 5    |
| Cł       | nanges from Revision E (April 2013) to Revision F                                                                                                                                                                                                                                   | Page |
| •        | Added /EM bullet to Features                                                                                                                                                                                                                                                        | 1    |
| •        | Deleted Ordering Information table                                                                                                                                                                                                                                                  | 3    |



#### 5 Description (continued)

LVDS is typically implemented in low-voltage digital CMOS processes, making it the ideal technology for high-speed interfacing between the DAC5675A-SP and high-speed low-voltage CMOS ASICs or FPGAs.

The DAC5675A-SP current-source-array architecture supports update rates of up to 400 MSPS. On-chip edge-triggered input latches provide for minimum setup and hold times, thereby relaxing interface timing.


The DAC5675A-SP is specifically designed for a differential transformer-coupled output with a  $50-\Omega$  doubly-terminated load. With the 20-mA full-scale output current, both a 4:1 impedance ratio (resulting in an output power of 4 dBm) and 1:1 impedance ratio transformer (–2 dBm) is supported. The last configuration is preferred for optimum performance at high output frequencies and update rates. The outputs are terminated to AVDD and have voltage compliance ranges from AVDD – 1 to AVDD + 0.3 V.

An accurate on-chip 1.2-V temperature-compensated bandgap reference and control amplifier allows the user to adjust this output current from 20 to 2 mA. This provides 20-dB gain range control capabilities. Alternatively, an external reference voltage may be applied. The DAC5675A-SP features a SLEEP mode, which reduces the standby power to approximately 18 mW.

The DAC5675A-SP is available in a 52-pin ceramic nonconductive tie-bar package (HFG). The device is specified for operation over the military temperature range of –55°C to 125°C and W temperature range of –55°C to 115°C.



## 6 Pin Configuration and Functions



#### **Pin Functions**

| PIN       |                                                       |     | DESCRIPTION                                                                                                                                          |
|-----------|-------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME      | NO.                                                   | I/O | DESCRIPTION                                                                                                                                          |
| AGND      | 13, 20, 26, 39, 44, 49, 50,<br>52                     | ı   | Analog negative supply voltage (ground). Pin 13 is internally connected to the heat slug and lid (lid is also grounded internally).                  |
| $AV_{DD}$ | 21, 45, 48, 51                                        | _   | Analog positive supply voltage                                                                                                                       |
| BIASJ     | 42                                                    | 0   | Full-scale output current bias                                                                                                                       |
| CLK       | 23                                                    | _   | External clock input                                                                                                                                 |
| CLKC      | 22                                                    | _   | Complementary external clock                                                                                                                         |
| D[13:0]A  | 1, 3, 5, 7, 9, 11, 14, 24, 27, 29, 31, 33, 35, 37     | 1   | LVDS positive input, data bits 13–0. D13A is the most significant data bit (MSB). D0A is the least significant data bit (LSB).                       |
| D[13:0]B  | 2, 4, 6, 8, 10, 12, 15, 25,<br>28, 30, 32, 34, 36, 38 | I   | LVDS negative input, data bits 13–0. D13B is the most significant data bit (MSB). D0B is the least significant data bit (LSB).                       |
| DGND      | 17, 19                                                |     | Digital negative supply voltage (ground)                                                                                                             |
| $DV_DD$   | 16, 18                                                | 1   | Digital positive supply voltage                                                                                                                      |
| EXTIO     | 43                                                    | I/O | Internal reference output or external reference input. Requires a 0.1-µF decoupling capacitor to AGND when used as reference output.                 |
| IOUT1     | 46                                                    | 0   | DAC current output. Full-scale when all input bits are set '0'. Connect the reference side of the DAC load resistors to ${\rm AV}_{\rm DD}$ .        |
| IOUT2     | 47                                                    | 0   | DAC complementary current output. Full-scale when all input bits are '1'. Connect the reference side of the DAC load resistors to AV <sub>DD</sub> . |
| NC        | 41                                                    |     | Not connected in chip. Can be high or low.                                                                                                           |
| SLEEP     | 40                                                    | I   | Asynchronous hardware power-down input. Active high. Internal pulldown.                                                                              |

Submit Documentation Feedback



## 7 Specifications

#### 7.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted)<sup>(1)</sup>

|                             |                                            | MIN  | MAX                    | UNIT |
|-----------------------------|--------------------------------------------|------|------------------------|------|
|                             | AV <sub>DD</sub> <sup>(2)</sup>            | -0.3 | 3.6                    |      |
| Supply voltage              | DV <sub>DD</sub> (3)                       | -0.3 | 3.6                    | V    |
|                             | AV <sub>DD</sub> to DV <sub>DD</sub>       | -3.6 | 3.6                    |      |
| Voltage between AG          | GND and DGND                               | -0.3 | 0.5                    | V    |
| CLK, CLKC <sup>(2)</sup>    |                                            | -0.3 | AV <sub>DD</sub> + 0.3 | V    |
| Digital input D[13:0]       | A, D[13:0]B <sup>(3)</sup> , SLEEP, DLLOFF | -0.3 | DV <sub>DD</sub> + 0.3 | V    |
| IOUT1, IOUT2 <sup>(2)</sup> |                                            | -1   | AV <sub>DD</sub> + 0.3 | V    |
| EXTIO, BIASJ <sup>(2)</sup> |                                            | -1   | AV <sub>DD</sub> + 0.3 | V    |
| Peak input current (        | (any input)                                |      | 20                     | mA   |
| Peak total input cur        | rent (all inputs)                          |      | -30                    | mA   |
| Lead temperature 1          | .6 mm (1/16 inch) from the case for 10 s   |      | 260                    | °C   |
| Storage temperatur          | e, T <sub>stg</sub>                        | -65  | 150                    | °C   |

<sup>(1)</sup> Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### 7.2 ESD Ratings

|                    |                         |                                                                  | VALUE | UNIT |
|--------------------|-------------------------|------------------------------------------------------------------|-------|------|
| V <sub>(ESD)</sub> | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) | ±4000 | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

#### 7.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)

|           |                                                          |              | MIN | NOM | MAX | UNIT |
|-----------|----------------------------------------------------------|--------------|-----|-----|-----|------|
| $A_{VDD}$ | Analog supply voltage                                    | 3.15         | 3.3 | 3.6 | V   |      |
| $D_{VDD}$ | Digital supply voltage                                   |              |     | 3.3 | 3.6 | V    |
| _         | On a setting it would be to set on a setting to set on a | 5962-0720401 | -55 |     | 125 | 00   |
| IJ        | Operating junction temperature range                     | -55          |     | 115 | °C  |      |

#### 7.4 Thermal Information

|                      |                                                  | DAC5675A-SP |      |
|----------------------|--------------------------------------------------|-------------|------|
|                      | THERMAL METRIC <sup>(1)</sup>                    | HFG (CQFP)  | UNIT |
|                      |                                                  | 52 PINS     |      |
| $R_{\theta JA}$      | Junction-to-free-air thermal resistance (2)      | 21.813      |      |
| $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance (3) | 0.849       |      |
| $R_{\theta JB}$      | Junction-to-board thermal resistance             | N/A         | °C/W |
| ΨЈТ                  | Junction-to-top characterization parameter       | N/A         |      |
| ΨЈВ                  | Junction-to-board characterization parameter     | N/A         |      |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

<sup>(2)</sup> Measured with respect to AGND

<sup>(3)</sup> Measured with respect to DGND

<sup>(2)</sup> Board mounted, per JESD 51-5 methodology

<sup>(3)</sup> MIL-STD-883 test method 1012



## 7.5 DC Electrical Characteristics (Unchanged After 100 kRad)

over operating junction temperature range, typical values at 25°C,  $AV_{DD} = 3.3 \text{ V}$ ,  $DV_{DD} = 3.3 \text{ V}$ ,  $I_{O(FS)} = 20 \text{ mA}$  (unless otherwise noted)

|                      | DAMETER                                       | 5962-0720401                                                                |                      |          | 01                     | 596                  |            |                        |                  |
|----------------------|-----------------------------------------------|-----------------------------------------------------------------------------|----------------------|----------|------------------------|----------------------|------------|------------------------|------------------|
| PARAMETER            |                                               | TEST CONDITIONS                                                             | MIN                  | TYP      | MAX                    | MIN                  | TYP        | MAX                    | UNIT             |
| Resolutio            | n                                             |                                                                             | 14                   |          |                        | 14                   |            |                        | bit              |
| DC ACC               | URACY <sup>(1)</sup>                          | 1                                                                           | 1                    |          |                        |                      |            |                        |                  |
| INL                  | Integral<br>nonlinearity                      | T <sub>MIN</sub> to T <sub>MAX</sub>                                        | -4                   | ±1.5     | 4.6                    | -4                   | ±1.5       | 4.6                    | LSB              |
| DNL                  | Differential                                  | T <sub>25°C</sub> to T <sub>MAX</sub>                                       | -2                   | ±0.6     | 2.2                    | -2                   | ±0.6       | 2.2                    | LCD              |
|                      | nonlinearity                                  | T <sub>MIN</sub>                                                            | -2                   | ±0.6     | 2.5                    | -2                   | ±0.6       | 2.5                    | LSB              |
| Monotoni             | icity                                         |                                                                             | Monoto               | onic 12b | Level                  | Monoto               | onic 12b L | _evel                  |                  |
| ANALOG               | OUTPUT                                        |                                                                             |                      |          |                        |                      |            |                        |                  |
| $I_{O(FS)}$          | Full-scale output current                     |                                                                             | 2                    |          | 20                     | 2                    |            | 20                     | mA               |
|                      | Output<br>compliance<br>range                 | $AV_{DD} = 3.15 \text{ to } 3.45 \text{ V},$<br>$I_{O(FS)} = 20 \text{ mA}$ | AV <sub>DD</sub> – 1 |          | AV <sub>DD</sub> + 0.3 | AV <sub>DD</sub> – 1 |            | AV <sub>DD</sub> + 0.3 | V                |
|                      | Offset error                                  |                                                                             |                      | 0.01     |                        |                      | 0.01       |                        | %FSR             |
|                      | Coin orror                                    | Without internal reference                                                  | -10                  | 5        | 10                     | -10                  | 5          | 10                     | 0/ ECD           |
|                      | Gain error                                    | With internal reference                                                     | -10                  | 2.5      | 10                     | -10                  | 2.5        | 10                     | %FSR             |
|                      | Output resistance                             |                                                                             |                      | 300      |                        |                      | 300        |                        | kΩ               |
|                      | Output capacitance                            |                                                                             |                      | 5        |                        |                      | 5          |                        | pF               |
| REFERE               | NCE OUTPUT                                    |                                                                             |                      |          |                        |                      |            |                        |                  |
| $V_{(EXTIO)}$        | Reference voltage                             |                                                                             | 1.17                 | 1.23     | 1.30                   | 1.17                 | 1.23       | 1.30                   | V                |
|                      | Reference<br>output<br>current <sup>(2)</sup> |                                                                             |                      | 100      |                        |                      | 100        |                        | nA               |
| REFERE               | NCE INPUT                                     |                                                                             |                      |          |                        |                      |            |                        |                  |
| V <sub>(EXTIO)</sub> | Input<br>reference<br>voltage                 |                                                                             | 0.6                  | 1.2      | 1.25                   | 0.6                  | 1.2        | 1.25                   | V                |
|                      | Input resistance                              |                                                                             |                      | 1        |                        |                      | 1          |                        | МΩ               |
|                      | Small-signal bandwidth                        |                                                                             |                      | 1.4      |                        |                      | 1.4        |                        | MHz              |
|                      | Input capacitance                             |                                                                             |                      | 100      |                        |                      | 100        |                        | pF               |
| TEMPER               | ATURE COEFFI                                  | CIENTS                                                                      |                      |          |                        |                      |            |                        |                  |
|                      | Offset drift                                  |                                                                             |                      | 12       |                        |                      | 12         |                        | ppm of<br>FSR/°C |
| $\Delta V_{(EXTIO)}$ | voltage drift                                 |                                                                             |                      | ±50      |                        |                      | ±50        |                        | ppm/°C           |
| POWER                | SUPPLY                                        |                                                                             |                      |          |                        |                      |            |                        |                  |
| $AV_{DD}$            | Analog supply voltage                         |                                                                             | 3.15                 | 3.3      | 3.6                    | 3.15                 | 3.3        | 3.6                    | V                |
| $DV_DD$              | Digital supply voltage                        |                                                                             | 3.15                 | 3.3      | 3.6                    | 3.15                 | 3.3        | 3.6                    | V                |
| I <sub>(AVDD)</sub>  | Analog supply current (3)                     |                                                                             |                      | 115      | 148                    |                      | 115        | 138                    | mA               |
|                      |                                               | +                                                                           | +                    |          |                        |                      |            |                        |                  |

Submit Documentation Feedback

<sup>(1)</sup> Measured differential at  $I_{OUT1}$  and  $I_{OUT2}$ : 25  $\Omega$  to  $AV_{DD}$  (2) Use an external buffer amplifier with high impedance input to drive any external load.

<sup>(3)</sup> Measured at  $f_{CLK}$  = 400 MSPS and  $f_{OUT}$  = 70 MHz



## DC Electrical Characteristics (Unchanged After 100 kRad) (continued)

over operating junction temperature range, typical values at 25°C,  $AV_{DD} = 3.3 \text{ V}$ ,  $DV_{DD} = 3.3 \text{ V}$ ,  $I_{O(FS)} = 20 \text{ mA}$  (unless otherwise noted)

|                | ,                                           |                                   |      |           |     |      |           |     |        |
|----------------|---------------------------------------------|-----------------------------------|------|-----------|-----|------|-----------|-----|--------|
| DA             | DAMETED                                     | TEST CONDITIONS                   | 596  | 2-0720401 |     | 596  | 2-0720402 |     | UNIT   |
| PARAMETER      |                                             | TEST CONDITIONS                   | MIN  | TYP       | MAX | MIN  | TYP       | MAX | UNII   |
| $I_{(DVDD)}$   | Digital supply current (3)                  |                                   |      | 85        | 130 |      | 85        | 120 | mA     |
| P <sub>D</sub> | Power<br>dissipation                        | AV/ 00\/ DV/ 00                   |      | 18        |     |      | 18        |     |        |
|                |                                             |                                   |      | 660       | 900 |      | 660       | 850 | mW     |
| APSRR          | Analog and                                  |                                   | -0.9 | ±0.1      | 0.9 | -0.9 | ±0.1      | 0.9 |        |
| DPSRR          | digital power-<br>supply<br>rejection ratio | AV <sub>DD</sub> = 3.15 to 3.45 V | -0.9 | ±0.1      | 0.9 | -0.9 | ±0.1      | 0.9 | %FSR/V |



## 7.6 AC Electrical Characteristics (Unchanged After 100 kRad)

over operating junction temperature range, typical values at 25°C,  $AV_{DD} = 3.3 \text{ V}$ ,  $DV_{DD} = 3.3 \text{ V}$ ,  $I_{O(FS)} = 20 \text{ mA}$ , differential transformer-coupled output,  $50-\Omega$  doubly-terminated load (unless otherwise noted)

|                     | DADAMETED TEST CONDITIONS         |                                                  | 5962-0720401                                   |     |     | 5962-0720402 |     |     | LINUT |            |
|---------------------|-----------------------------------|--------------------------------------------------|------------------------------------------------|-----|-----|--------------|-----|-----|-------|------------|
| PARAMETER           |                                   |                                                  | TEST CONDITIONS                                | MIN | TYP | MAX          | MIN | TYP | MAX   | UNIT       |
| ANALO               | G OUTPUT                          |                                                  |                                                |     |     |              |     |     |       |            |
| $f_{CLK}$           | Output update rate                |                                                  |                                                |     |     | 400          |     |     | 400   | MSPS       |
| t <sub>s(DAC)</sub> | Output setting time to 0.1%       | Transition                                       | n: code x2000 to x23 <sub>FF</sub>             |     | 12  |              |     | 12  |       | ns         |
| t <sub>PD</sub>     | Output propagation delay          |                                                  |                                                |     | 1   |              |     | 1   |       | ns         |
| $t_{r(IOUT)}$       | Output rise time,<br>10% to 90%   |                                                  |                                                |     | 300 |              |     | 300 |       | ps         |
| $t_{f(IOUT)}$       | Output fall time,<br>90% to 10%   |                                                  |                                                |     | 300 |              |     | 300 |       | ps         |
|                     | Outract as also                   | IOUT <sub>FS</sub> =                             | = 20 mA                                        |     | 55  |              |     | 55  |       | - A / /LL= |
|                     | Output noise                      | IOUT <sub>FS</sub> =                             | = 2 mA                                         |     | 30  |              |     | 30  |       | pA/√Hz     |
| AC LINE             | ARITY                             |                                                  |                                                |     |     |              |     |     |       |            |
|                     |                                   | $f_{CLK} = 10$                                   | 00 MSPS, $f_{OUT} = 19.9 \text{ MHz}$          |     | 70  |              |     | 70  |       |            |
|                     |                                   | $f_{CLK} = 16$                                   | 60 MSPS, $f_{OUT}$ = 41 MHz                    |     | 72  |              |     | 72  |       |            |
| THD                 | Total harmonic distortion         | $f_{CLK} = 20$                                   | 00 MSPS, $f_{OUT}$ = 70 MHz                    |     | 68  |              |     | 68  |       | dBc        |
|                     |                                   | ortion                                           | $f_{OUT}$ = 20.0 MHz                           | 60  | 68  |              | 62  | 68  |       |            |
|                     |                                   | f <sub>CLK</sub> = 400                           | $f_{\rm OUT}$ = 20.0 MHz, for T <sub>MIN</sub> | 57  |     |              | 57  |     |       |            |
|                     |                                   | MSPS                                             | $f_{OUT}$ = 70 MHz                             |     | 67  |              |     | 67  |       |            |
|                     |                                   |                                                  | f <sub>OUT</sub> = 140 MHz                     |     | 55  |              |     | 55  |       |            |
|                     |                                   | $f_{CLK} = 10$                                   | 00 MSPS, $f_{OUT}$ = 19.9 MHz                  |     | 70  |              |     | 70  |       |            |
|                     |                                   | $f_{CLK} = 16$                                   | 60 MSPS, $f_{OUT}$ = 41 MHz                    |     | 73  |              |     | 73  |       |            |
|                     | Spurious-free                     | $f_{CLK} = 20$                                   | 00 MSPS, $f_{OUT} = 70 \text{ MHz}$            |     | 70  |              |     | 70  |       |            |
| SFDR                | dynamic range to                  |                                                  | $f_{OUT}$ = 20.0 MHz                           | 62  | 68  |              | 63  | 68  |       | dBc        |
|                     | Nyquist                           | f <sub>CLK</sub> = 400                           | $f_{OUT}$ = 20.0 MHz, for $T_{MIN}$            | 61  |     |              | 61  |     |       |            |
|                     |                                   | MSPS                                             | $f_{OUT}$ = 70 MHz                             |     | 69  |              |     | 69  |       |            |
|                     |                                   |                                                  | $f_{OUT}$ = 140 MHz                            |     | 56  |              |     | 56  |       |            |
|                     |                                   | $f_{CLK} = 10$                                   | 00 MSPS, $f_{OUT} = 19.9 \text{ MHz}$          |     | 82  |              |     | 82  |       |            |
|                     | Spurious-free                     | $f_{CLK} = 16$                                   | 60 MSPS, $f_{OUT}$ = 41 MHz                    |     | 77  |              |     | 77  |       |            |
| SFDR                | dynamic range                     | $f_{CLK} = 20$                                   | 00 MSPS, $f_{OUT} = 70 \text{ MHz}$            |     | 82  |              |     | 82  |       | dBc        |
| SEDK                | within a window, 5                | f <sub>CLK</sub> =                               | $f_{OUT}$ = 20.0 MHz                           |     | 82  |              |     | 82  |       | ubc        |
|                     | MHz span                          | 400                                              | f <sub>OUT</sub> = 70 MHz                      |     | 82  |              |     | 82  |       |            |
|                     |                                   | MSPS                                             | f <sub>OUT</sub> = 140 MHz                     |     | 75  |              |     | 75  |       |            |
| SNR                 | Signal-to-noise ratio             | $f_{CLK} = 40$                                   | 00 MSPS, $f_{OUT} = 20.0 \text{ MHz}$          | 60  | 67  |              | 60  | 67  |       | dBc        |
|                     | Adjacent channel power ratio WCDM | f <sub>CLK</sub> = 12<br>see Figure              | 22.88 MSPS, IF = 30.72 MHz,<br>re 9            |     | 73  |              |     | 73  |       |            |
| ACPR                | A with 3.84 MHz                   | were ratio WCDM $f_{CLK} = 245.76 \text{ MSPS},$ |                                                |     | 71  |              |     | 71  |       | dB         |
|                     | BW, 5 MHz channel spacing         | f <sub>CLK</sub> = 39<br>see Figur               | 99.36 MSPS, IF = 153.36 MHz,<br>re 11          |     | 65  |              |     | 65  |       |            |

Submit Documentation Feedback



## AC Electrical Characteristics (Unchanged After 100 kRad) (continued)

over operating junction temperature range, typical values at 25°C,  $AV_{DD} = 3.3 \text{ V}$ ,  $DV_{DD} = 3.3 \text{ V}$ ,  $I_{O(FS)} = 20 \text{ mA}$ , differential transformer-coupled output,  $50-\Omega$  doubly-terminated load (unless otherwise noted)

|     | ARAMETER                                                                            | TEST CONDITIONS                                                              | 596 | 2-072040 | 1   | 5962 | UNIT |     |      |
|-----|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----|----------|-----|------|------|-----|------|
| F   | ARAWEIER                                                                            | TEST CONDITIONS                                                              | MIN | TYP      | MAX | MIN  | TYP  | MAX | UNIT |
| IMD | Two-tone intermodulation                                                            | $f_{\rm CLK}$ = 400 MSPS, $f_{\rm OUT1}$ = 70 MHz, $f_{\rm OUT2}$ = 71 MHz   |     | 73       |     |      | 73   |     |      |
|     | to Nyquist (each<br>tone at<br>-6 dBfs)                                             | $f_{\rm CLK}$ = 400 MSPS, $f_{\rm OUT1}$ = 140 MHz, $f_{\rm OUT2}$ = 141 MHz |     | 62       |     |      | 62   |     |      |
|     | Four-tone intermodulation, 15-MHz span, missing center tone (each tone at –16 dBfs) | $f_{\rm CLK}$ = 156 MSPS, $f_{\rm OUT}$ = 15.6, 15.8, 16.2, 16.4 MHz         |     | 82       |     |      | 82   |     | dBc  |
|     |                                                                                     | $f_{\rm CLK}$ = 400 MSPS, $f_{\rm OUT}$ = 68.1, 69.3, 71.2, 72 MHz           |     | 74       |     |      | 74   |     |      |



## 7.7 Digital Specifications (Unchanged After 100 kRad)

over operating junction temperature range, typical values at 25°C,  $AV_{DD} = 3.3 \text{ V}$ ,  $DV_{DD} = 3.3 \text{ V}$  (unless otherwise noted)

|                    | DADAMETED                                           | TECT COMPLETIONS           | 5962-0720401 |      |     | 5962-0720402 |      |     |          |
|--------------------|-----------------------------------------------------|----------------------------|--------------|------|-----|--------------|------|-----|----------|
|                    | PARAMETER                                           | TEST CONDITIONS MIN TYP MA |              |      |     | MIN TYP MAX  |      |     | UNIT     |
| LVDS INTER         | RFACE: NODES D[13:0]A, D[                           | 13:0]B                     |              |      |     |              |      |     |          |
| V <sub>ITH+</sub>  | Positive-going differential input voltage threshold |                            |              | 100  |     |              | 100  |     | mV       |
| V <sub>ITH</sub> _ | Negative-going differential input voltage threshold |                            |              | -100 |     |              | -100 |     | mV       |
| Z <sub>T</sub>     | Internal termination impedance                      |                            | 90           | 110  | 132 | 90           | 110  | 132 | Ω        |
| Cı                 | Input capacitance                                   |                            |              | 2    |     |              | 2    |     | pF       |
| CMOS INTE          | RFACE (SLEEP)                                       |                            |              |      |     |              |      | •   |          |
| V <sub>IH</sub>    | High-level input voltage                            |                            | 2            | 3.3  |     | 2            | 3.3  |     | V        |
| $V_{IL}$           | Low-level input voltage                             |                            |              | 0    | 0.8 |              | 0    | 0.8 | V        |
| I <sub>IH</sub>    | High-level input current                            |                            | 10           |      | 100 | 10           |      | 100 | μΑ       |
| I <sub>IL</sub>    | Low-level input current                             |                            | -10          |      | 10  | -10          |      | 10  | μΑ       |
|                    | Input capacitance                                   |                            |              | 2    |     |              | 2    |     | pF       |
| CLOCK INTE         | ERFACE (CLK, CLKC)                                  |                            |              |      |     |              |      |     |          |
| CLK-CLKC           | Clock differential input voltage                    |                            | 0.4          |      | 8.0 | 0.4          |      | 0.8 | $V_{PP}$ |
| $t_{w(H)}$         | Clock pulse width high                              |                            |              | 1.25 |     |              | 1.25 |     | ns       |
| $t_{w(L)}$         | Clock pulse width low                               |                            |              | 1.25 |     |              | 1.25 |     | ns       |
|                    | Clock duty cycle                                    |                            | 40%          |      | 60% | 40%          |      | 60% |          |
| V <sub>CM</sub>    | Common-mode voltage range                           |                            | 1.6          | 2    | 2.4 | 1.6          | 2    | 2.4 | V        |
|                    | Input resistance                                    | Node CLK, CLKC             |              | 670  |     |              | 670  |     | Ω        |
|                    | Input capacitance                                   | Node CLK, CLKC             |              | 2    |     |              | 2    |     | pF       |
|                    | Input resistance                                    | Differential               |              | 1.3  |     |              | 1.3  |     | kΩ       |
|                    | Input capacitance                                   | Differential               |              | 1    |     |              | 1    |     | pF       |
| TIMING             |                                                     |                            |              |      |     |              |      |     |          |
| t <sub>SU</sub>    | Input setup time                                    |                            | 1.5          |      |     | 1.5          |      |     | ns       |
| t <sub>H</sub>     | Input hold time                                     |                            | 0.0          |      |     | 0.0          |      |     | ns       |
| t <sub>DD</sub>    | Digital delay time (DAC latency)                    |                            |              | 3    |     |              | 3    |     | clk      |

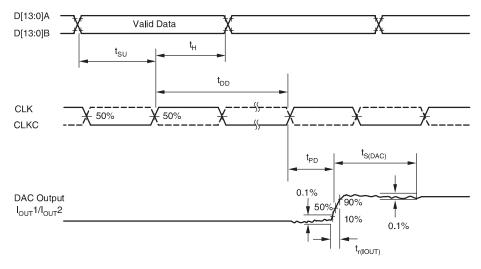



Figure 1. Timing Diagram



### 7.8 Electrical Characteristics(1)

over operating junction temperature range,  $AV_{DD} = 3.3 \text{ V}$ ,  $DV_{DD} = 3.3 \text{ V}$ ,  $I_{O(FS)} = 20 \text{ mA}$  (unless otherwise noted)

| VOLTAGES                  |                    | RESULTING<br>DIFFERENTIAL<br>INPUT VOLTAGE | RESULTING<br>COMMON-MODE<br>INPUT VOLTAGE | LOGICAL BIT<br>BINARY<br>EQUIVALENT | COMMENT                                                                |
|---------------------------|--------------------|--------------------------------------------|-------------------------------------------|-------------------------------------|------------------------------------------------------------------------|
| <b>V</b> <sub>A</sub> (V) | V <sub>B</sub> (V) | V <sub>A,B</sub> (mV)                      | V <sub>COM</sub> (V)                      |                                     |                                                                        |
| 1.25                      | 1.15               | 100                                        | 1.2                                       | 1                                   |                                                                        |
| 1.15                      | 1.25               | -100                                       | 1.2                                       | 0                                   |                                                                        |
| 2.4                       | 2.3                | 100                                        | 2.35                                      | 1                                   | Operation with minimum differential voltage                            |
| 2.3                       | 2.4                | -100                                       | 2.35                                      | 0                                   | (±100 mV) applied to the complementary inputs versus common-mode range |
| 0.1                       | 0                  | 100                                        | 0.05                                      | 1                                   |                                                                        |
| 0                         | 0.1                | -100                                       | 0.05                                      | 0                                   |                                                                        |
| 1.5                       | 0.9                | 600                                        | 1.2                                       | 1                                   |                                                                        |
| 0.9                       | 1.5                | -600                                       | 1.2                                       | 0                                   |                                                                        |
| 2.4                       | 1.8                | 600                                        | 2.1                                       | 1                                   | Operation with maximum differential voltage                            |
| 1.8                       | 2.4                | -600                                       | 2.1                                       | 0                                   | (±600 mV) applied to the complementary inputs versus common-mode range |
| 0.6                       | 0                  | 600                                        | 0.3                                       | 1                                   |                                                                        |
| 0                         | 0.6                | -600                                       | 0.3                                       | 0                                   |                                                                        |

#### (1) Specifications subject to change.

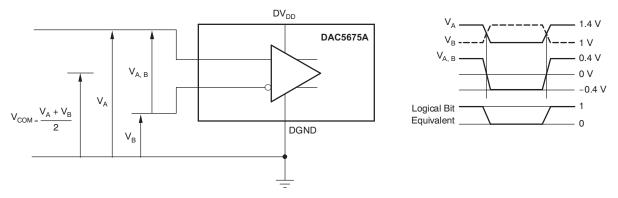
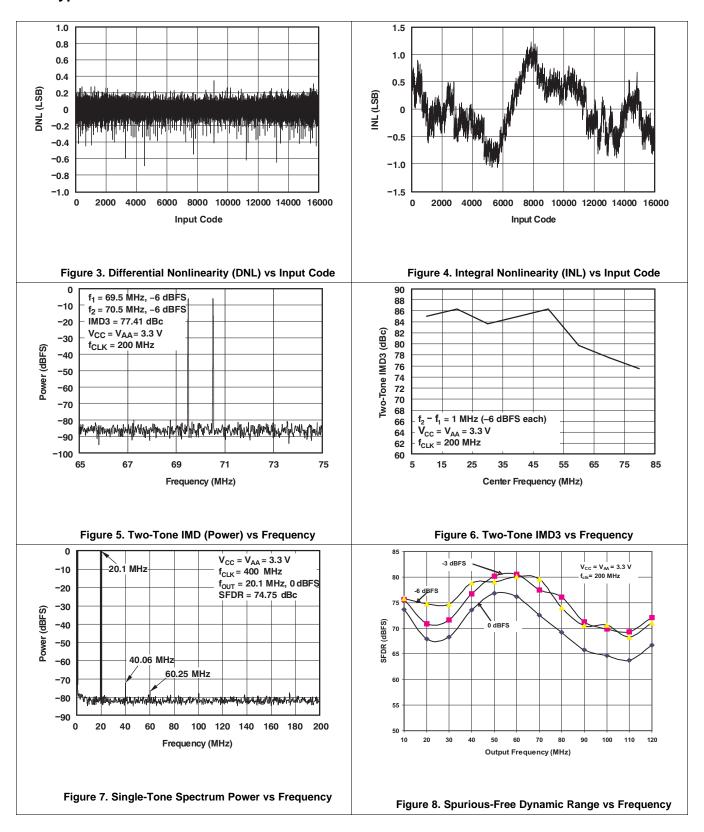




Figure 2. LVDS Timing Test Circuit and Input Test Levels

Copyright © 2007–2015, Texas Instruments Incorporated

# TEXAS INSTRUMENTS

#### 7.9 Typical Characteristics





### **Typical Characteristics (continued)**

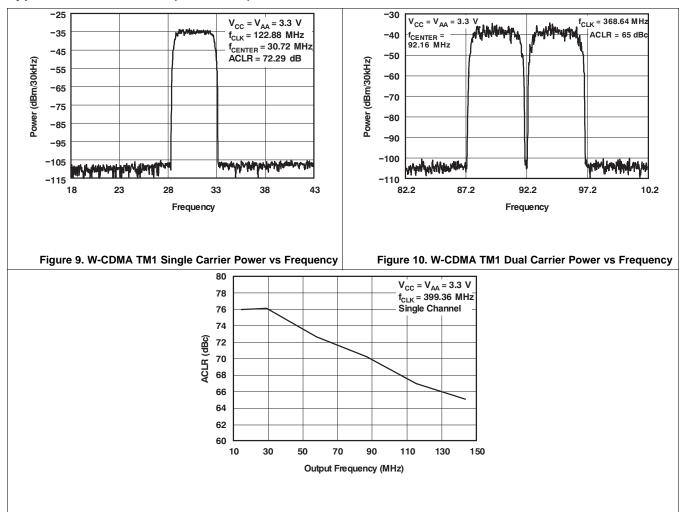
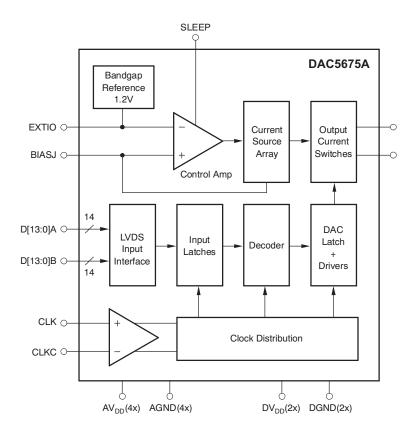



Figure 11. W-CDMA TM1 Single Carrier ACLR vs Output Frequency




#### 8 Detailed Description

#### 8.1 Overview

Functional Block Diagram shows a simplified block diagram of the current steering DAC5675A-SP. The DAC5675A-SP consists of a segmented array of NPN-transistor current sources, capable of delivering a full-scale output current up to 20 mA. Differential current switches direct the current of each current source to either one of the complementary output nodes IOUT1 or IOUT2. The complementary current output enables differential operation, canceling out common-mode noise sources (digital feedthrough, on-chip, and PCB noise), dc offsets, and even-order distortion components, and doubling signal output power.

The full-scale output current is set using an external resistor ( $R_{BIAS}$ ) with an on-chip bandgap voltage reference source (1.2 V) and control amplifier. The current ( $I_{BIAS}$ ) through resistor  $R_{BIAS}$  is mirrored internally to provide a full-scale output current equal to 16 ×  $I_{BIAS}$ . The full-scale current is adjustable from 20 to 2 mA by using the appropriate bias resistor value.

#### 8.2 Functional Block Diagram



#### 8.3 Feature Description

#### 8.3.1 Digital Inputs

The DAC5675A-SP uses a low-voltage differential signaling (LVDS) bus input interface. The LVDS features a low differential voltage swing with low constant power consumption (4 mA per complementary data input) across frequency. The differential characteristic of LVDS allows for high-speed data transmission with low electromagnetic interference (EMI) levels. Figure 12 shows the equivalent complementary digital input interface for the DAC5675A-SP, valid for pins D[13:0]A and D[13:0]B. Note that the LVDS interface features internal  $110-\Omega$  resistors for proper termination. Figure 2 shows the LVDS input timing measurement circuit and waveforms. A common-mode level of 1.2 V and a differential input swing of 0.8  $V_{PP}$  is applied to the inputs.

Figure 13 shows a schematic of the equivalent CMOS/TTL-compatible digital inputs of the DAC5675A-SP, valid for the SLEEP pin.



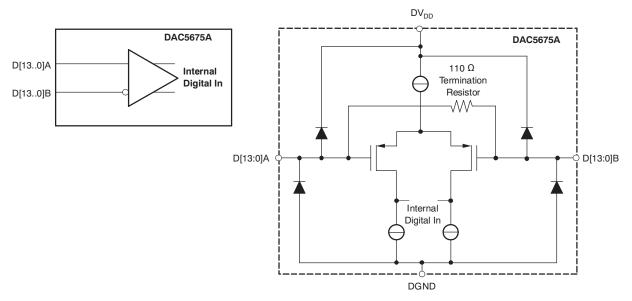



Figure 12. LVDS Digital Equivalent Input

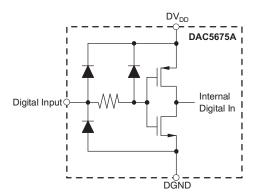



Figure 13. CMOS/TTL Digital Equivalent Input

#### 8.3.2 Clock Input

The DAC5675A-SP features differential LVPECL-compatible clock inputs (CLK, CLKC). Figure 14 shows the equivalent schematic of the clock input buffer. The internal biasing resistors set the input common-mode voltage to approximately 2 V, while the input resistance is typically 670  $\Omega$ . A variety of clock sources can be ac-coupled to the device, including a sine-wave source (see Figure 15).



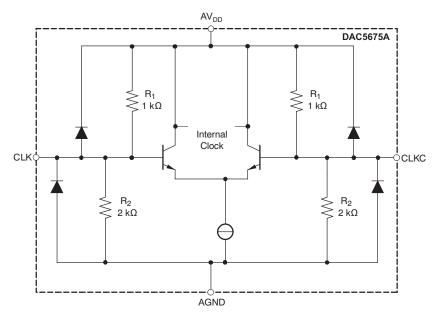



Figure 14. Clock Equivalent Input

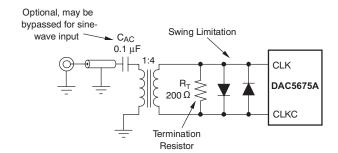



Figure 15. Driving the DAC5675A-SP With a Single-Ended Clock Source Using a Transformer

To obtain best ac performance, the DAC5675A-SP clock input should be driven with a differential LVPECL or sine-wave source as shown in Figure 16 and Figure 17. Here, the potential of  $V_{TT}$  should be set to the termination voltage required by the driver along with the proper termination resistors ( $R_{T}$ ). The DAC5675A-SP clock input can also be driven single ended (see Figure 18).

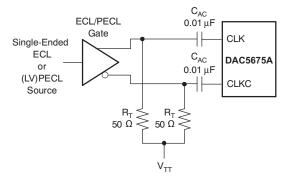



Figure 16. Driving the DAC5675A-SP With a Single-Ended ECL/PECL Clock Source



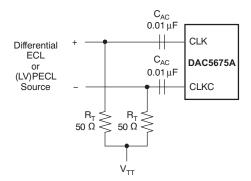



Figure 17. Driving the DAC5675A-SP With a Differential ECL/PECL Clock Source

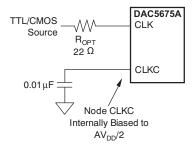



Figure 18. Driving the DAC5675A-SP With a Single-Ended TTL/CMOS Clock Source

#### 8.3.3 Supply Inputs

The DAC5675A-SP comprises separate analog and digital supplies,  $AV_{DD}$  and  $DV_{DD}$ , respectively. These supply inputs can be set independently from 3.6 to 3.15 V.

#### 8.3.4 DAC Transfer Function

The DAC5675A-SP has a current sink output. The current flow through IOUT1 and IOUT2 is controlled by D[13:0]A and D[13:0]B. For ease of use, D[13:0] is denoted as the logical bit equivalent of D[13:0]A and its complement D[13:0]B. The DAC5675A-SP supports straight binary coding with D13 being the MSB and D0 the LSB. Full-scale current flows through IOUT2 when all D[13:0] inputs are set high and through IOUT1 when all D[13:0] inputs are set low. The relationship between IOUT1 and IOUT2 can be expressed as Equation 1.

$$IOUT1 = IO_{(FS)} - IOUT2$$
 (1)

 $IO_{(FS)}$  is the full-scale output current sink (2 to 20 mA). Because the output stage is a current sink, the current can only flow from AV<sub>DD</sub> through the load resistors R<sub>L</sub> into the IOUT1 and IOUT2 pins.

The output current flow in each pin driving a resistive load can be expressed as shown in Figure 19, Equation 2, and Equation 3.

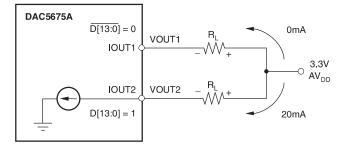



Figure 19. Relationship Between D[13:0], IOUT1 and IOUT2

(3)



#### **Feature Description (continued)**

IOUT1 = 
$$\frac{IO_{(FS)} \times (16383 - CODE)}{16384}$$
IOUT2 =  $\frac{IO_{(FS)} \times CODE}{16384}$ 

where

CODE is the decimal representation of the DAC input word

This would translate into single-ended voltages at IOUT1 and IOUT2, as shown in Equation 4 and Equation 5.

$$VOUT1 = AVDD - IOUT1 \times R_{L}$$
(4)

$$VOUT2 = AVDD - IOUT2 \times R_{I}$$
 (5)

Assuming that D[13:0] = 1 and the R<sub>L</sub> is 50  $\Omega$ , the differential voltage between pins IOUT1 and IOUT2 can be expressed as shown in Equation 6 through Equation 8.

$$VOUT1 = 3.3 \text{ V} - 0 \text{ mA} \times 50 = 3.3 \text{ V}$$
 (6)

$$VOUT2 = AVDD - 20 \text{ mA} \times 50 = 2.3 \text{ V}$$

$$(7)$$

$$VDIFF = VOUT1 - VOUT2 = 1 V$$
(8)

If D[13:0] = 0, then IOUT2 = 0 mA, IOUT1 = 20 mA, and the differential voltage VDIFF = -1 V.

The output currents and voltages in IOUT1 and IOUT2 are complementary. The voltage, when measured differentially, is doubled compared to measuring each output individually. Take care not to exceed the compliance voltages at the IOUT1 and IOUT2 pins to keep signal distortion low.

### 8.3.5 Reference Operation

The DAC5675A-SP has a bandgap reference and control amplifier for biasing the full-scale output current. The full-scale output current is set by applying an external resistor,  $R_{BIAS}$ . The bias current  $I_{BIAS}$  through resistor  $R_{BIAS}$  is defined by the on-chip bandgap reference voltage and control amplifier. The full-scale output current equals 16x this bias current. The full-scale output current  $IO_{(FS)}$  is thus expressed as Equation 9.

$$I_{\text{O(FS)}} = 16 \times I_{\text{BIAS}} = \frac{16 \times V_{\text{EXTIO}}}{R_{\text{BIAS}}}$$

where

$$V_{\text{EXTIO}}$$
 is the voltage at pin EXTIO (9)

The bandgap reference voltage delivers a stable voltage of 1.2 V. This reference can be overridden by applying an external voltage to terminal EXTIO. The bandgap reference can additionally be used for external reference operation. In such a case, select an external buffer amplifier with high-impedance input to limit the bandgap load current to less than 100 nA. The capacitor  $C_{\text{EXT}}$  may be omitted. Pin EXTIO serves as either an input or output node. The full-scale output current is adjustable from 20 to 2 mA by varying resistor  $R_{\text{BIAS}}$ .

#### 8.3.6 Analog Current Outputs

Figure 20 shows a simplified schematic of the current source array output with corresponding switches. Differential NPN switches direct the current of each individual NPN current source to either the positive output node IOUT1 or its complementary negative output node IOUT2. The output impedance is determined by the stack of the current sources and differential switches and is >300 k $\Omega$  in parallel with 5-pF output capacitance.

The external output resistors are referred to the positive supply, AV<sub>DD</sub>.



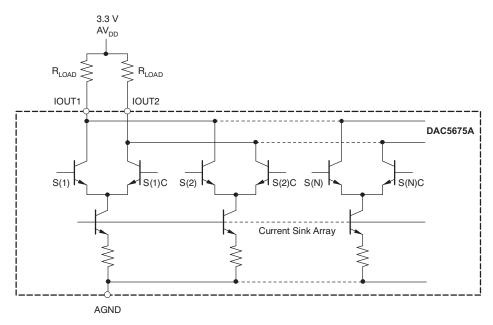



Figure 20. Equivalent Analog Current Output

Figure 21(a) shows the typical differential output configuration with two external matched resistor loads. The nominal resistor load of 25  $\Omega$  gives a differential output swing of 1  $V_{PP}$  (0.5  $V_{PP}$  single ended) when applying a 20-mA full-scale output current. The output impedance of the DAC5675A-SP slightly depends on the output voltage at nodes IOUT1 and IOUT2. Consequently, for optimum dc-integral nonlinearity, choose the configuration of Figure 21(b). In this current/voltage (I-V) configuration, terminal IOUT1 is kept at  $AV_{DD}$  by the inverting operational amplifier. The complementary output should be connected to  $AV_{DD}$  to provide a dc-current path for the current sources switched to IOUT1. The amplifier maximum output swing and the full-scale output current of the DAC determine the value of the feedback resistor,  $R_{FB}$ . The capacitor  $C_{FB}$  filters the steep edges of the DAC5675A-SP current output, thereby reducing the operational amplifier slew-rate requirements. In this configuration, the operational amplifier should operate at a supply voltage higher than the resistor output reference voltage  $AV_{DD}$  as a result of its positive and negative output swing around  $AV_{DD}$ . Select node IOUT1 if a single-ended unipolar output is desired.

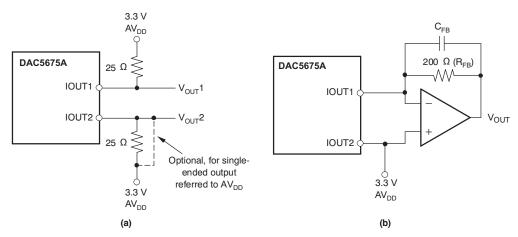



Figure 21. Output Configurations

Product Folder Links: DAC5675A-SP



#### 8.4 Device Functional Modes

#### 8.4.1 Sleep Mode

The DAC5675A-SP features a power-down mode that turns off the output current and reduces the supply current to approximately 6 mA. The power-down mode is activated by applying a logic level one to the SLEEP pin, pulled down internally.



#### 9 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

#### 9.1 Application Information

The DAC5675A-SP is a 14-bit resolution high-speed DAC. The DAC5675A-SP is designed for high-speed digital data transmission in wired and wireless communication systems, high-frequency DDS, and waveform reconstruction in test and measurement applications. The DAC5675A-SP has excellent SFDR at high intermediate frequencies, which makes it well suited for multicarrier transmission in TDMA and CDMA based cellular BTSs.

#### 9.2 Typical Application

The DAC5675A-SP consists of a segmented array of NPN-transistor current sources, capable of delivering a full-scale output current up to 20 mA. Differential current switches direct the current of each current source to either one of the complementary output nodes IOUT1 or IOUT2. The complementary current output enables differential operation, canceling out common-mode noise sources (digital feed through, on-chip, and PCB noise), dc offsets, and even order distortion components, and doubling signal output power.



Figure 22. Typical Application Schematic

#### 9.2.1 Design Requirements

For this design example, use the parameters listed in Table 1 as the input parameters.

| Table 1. Design Parameter | Parameters |
|---------------------------|------------|
|---------------------------|------------|

| Design Parameter | Example Value |  |  |  |  |  |
|------------------|---------------|--|--|--|--|--|
| Cest             | 0.1 μF        |  |  |  |  |  |
| Rbias            | 1 kΩ          |  |  |  |  |  |
| RT               | 200 Ω         |  |  |  |  |  |
| Rload            | 50 Ω          |  |  |  |  |  |

#### 9.2.2 Detailed Design Procedure

The DAC5675A-SP can be easily configured to drive a doubly-terminated  $50-\Omega$  cable using a properly selected transformer. Figure 23 and Figure 24 show the 1:1 and 4:1 impedance ratio configuration, respectively. These configurations provide maximum rejection of common-mode noise sources and even-order distortion components, thereby doubling the power of the DAC to the output. The center tap on the primary side of the transformer is terminated to  $AV_{DD}$ , enabling a dc-current flow for both IOUT1 and IOUT2. Note that the ac performance of the DAC5675A-SP is optimum and specified using a 1:1 differential transformer-coupled output.

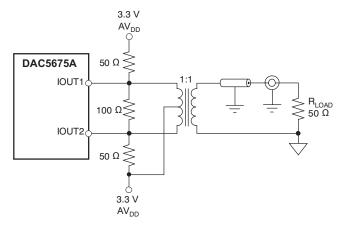



Figure 23. Driving a Doubly Terminated 50-Ω Cable Using a 1:1 Impedance Ratio Transformer

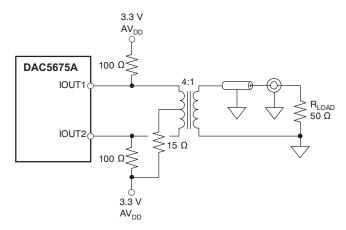



Figure 24. Driving a Doubly Terminated 50  $\Omega$  Cable Using a 4:1 Impedance Ratio Transformer

Submit Documentation Feedback



## 9.2.3 Application Curve

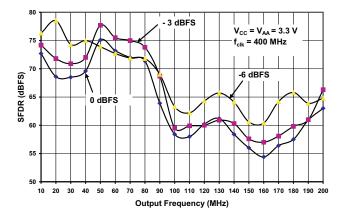



Figure 25. Spurious-Free Dynamic Range vs Frequency



## 10 Power Supply Recommendations

The DAC5675 uses a single 3.3-V power supply simplifying design requirements. The power supply should be filtered from any other system noise that may be present. The filtering should pay particular attention to frequencies of interest for output.

## 11 Layout

#### 11.1 Layout Guidelines

- DAC output termination should be placed as close as possible to outputs.
- · Keep routing for RBIAS short.
- Decoupling capacitors should be placed as close as possible to supply pins.
- Digital differential inputs must be 50 Ω to ground loosely coupled, or 100-Ω differential tightly coupled.
- Digital differential inputs must be length matched.

#### 11.2 Layout Example

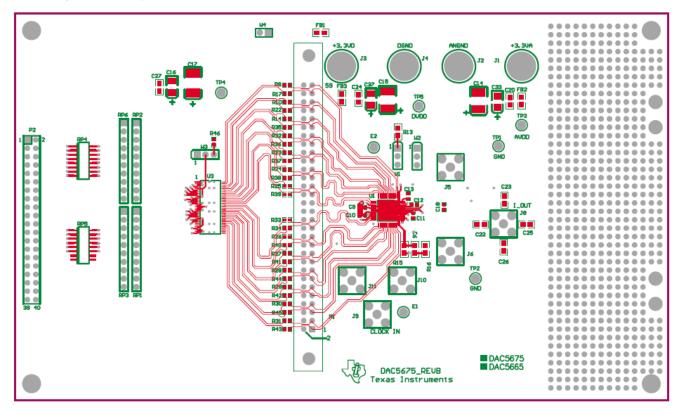



Figure 26. Top Layer



#### Layout Example (continued)

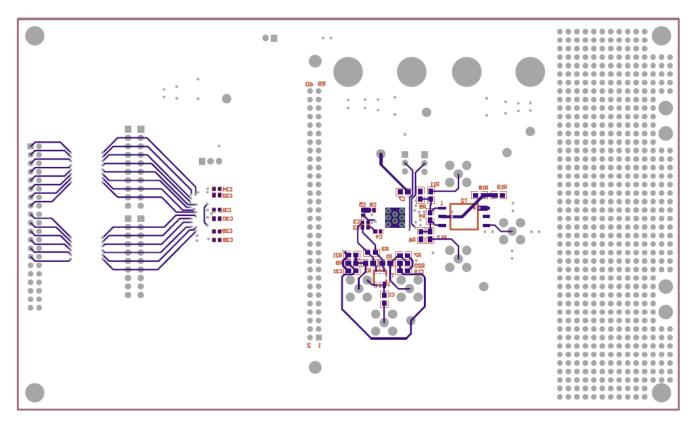



Figure 27. Bottom Layer

#### 11.3 Thermal Considerations

This CQFP package has built-in vias that electrically and thermally connect the bottom of the die to a pad on the bottom of the package. To efficiently remove heat and provide a low-impedance ground path, a thermal land is required on the surface of the PCB directly under the body of the package. During normal surface mount flow solder operations, the heat pad on the underside of the package is soldered to this thermal land creating an efficient thermal path. Normally, the PCB thermal land has a number of thermal vias within it that provide a thermal path to internal copper areas (or to the opposite side of the PCB) that provide for more efficient heat removal. TI typically recommends an 11.9-mm 2-board-mount thermal pad. This allows maximum area for thermal dissipation, while keeping leads away from the pad area to prevent solder bridging. A sufficient quantity of thermal/electrical vias must be included to keep the device within recommended operating conditions. This pad must be electrically ground potential.



## **Thermal Considerations (continued)**

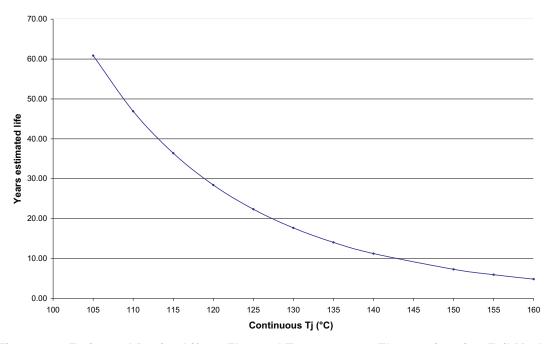



Figure 28. Estimated Device Life at Elevated Temperatures Electromigration Fail Modes

Submit Documentation Feedback



## 12 Device and Documentation Support

#### 12.1 Device Support

#### 12.1.1 Definitions of Specifications and Terminology

ACPR or adjacent channel power ratio is defined for a 3.84-Mcps 3GPP W-CDMA input signal measured

in a 3.84-MHz bandwidth at a 5-MHz offset from the carrier with a 12-dB peak-to-average ratio.

APSSR or analog power supply ratio is the percentage variation of full-scale output current versus a 5%

variation of the analog power supply AV<sub>DD</sub> from the nominal. This is a dc measurement.

**DPSSR** or digital power supply ratio is the percentage variation of full-scale output current versus a 5%

variation of the digital power supply DV<sub>DD</sub> from the nominal. This is a dc measurement.

Gain error is as the percentage error in the ratio between the measured full-scale output current and the value

of 16  $\times$  V<sub>(EXTIO)</sub>/R<sub>BIAS</sub>. A V<sub>(EXTIO)</sub> of 1.25 V is used to measure the gain error with an external reference voltage applied. With an internal reference, this error includes the deviation of V<sub>(EXTIO)</sub> (internal bandgap reference voltage) from the typical value of 1.25 V.

Offset error is as the percentage error in the ratio of the differential output current (IOUT1-IOUT2) and half of

the full-scale output current for input code 8192.

**SINAD** is the ratio of the RMS value of the fundamental output signal to the RMS sum of all other spectral

components below the Nyquist frequency, including noise and harmonics, but excluding dc.

**SNR** is the ratio of the RMS value of the fundamental output signal to the RMS sum of all other spectral

components below the Nyquist frequency, including noise, but excluding the first six harmonics and

dc.

**THD** is the ratio of the RMS sum of the first six harmonic components to the RMS value of the

fundamental output signal.

#### 12.2 Trademarks

All trademarks are the property of their respective owners.

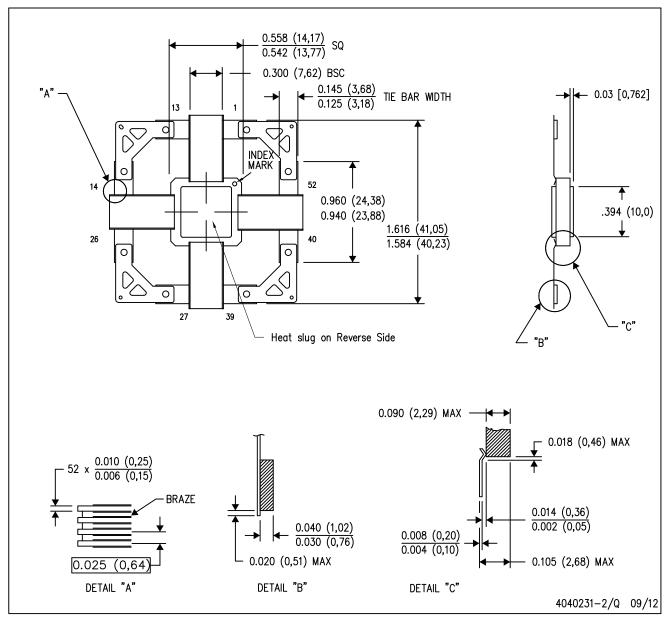
#### 12.3 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### 12.4 Glossary

SLYZ022 — TI Glossary.


This glossary lists and explains terms, acronyms, and definitions.

## 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

## HFG (S-CQFP-F52)

## CERAMIC QUAD FLATPACK WITH NCTB



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Ceramic quad flatpack with flat leads brazed to non-conductive tie bar carrier.
- D. This package is hermetically sealed with a metal lid.
- E. The leads are gold plated and can be solderdipped.
- F. Leads not shown for clarity purposes.
- G. Lid and heat sink are connected to GND leads.







10-Apr-2015

#### PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package<br>Drawing |    | Package<br>Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5)               | Samples |
|------------------|--------|--------------|--------------------|----|----------------|----------|------------------|--------------------|--------------|---------------------------------------|---------|
| 5962-0720401VXC  | ACTIVE | CFP          | HFG                | 52 | 1              | TBD      | Call TI          | N / A for Pkg Type | -55 to 125   | 5962-0720401VX<br>C<br>DAC5675AMHFG-V | Samples |
| 5962-0720402VXC  | ACTIVE | CFP          | HFG                | 52 | 1              | TBD      | Call TI          | N / A for Pkg Type | -55 to 115   | 5962-0720402VX<br>C<br>DAC5675AWHFG-V | Samples |
| DAC5675AHFG/EM   | ACTIVE | CFP          | HFG                | 52 |                | TBD      | Call TI          | N / A for Pkg Type | 25 Only      | DAC5675AHFG/EM<br>EVAL ONLY           | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.



## **PACKAGE OPTION ADDENDUM**

10-Apr-2015

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF DAC5675A-SP:

Catalog: DAC5675A

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### **Products Applications**

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com

Microcontrollers www.ti.com/video microcontroller.ti.com Video and Imaging

www.ti-rfid.com

**OMAP Applications Processors TI E2E Community** www.ti.com/omap e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity