

LEAD-FREE / RoHS-COMPLIANT

HIGH POWER SURFACE-MOUNT BALUN

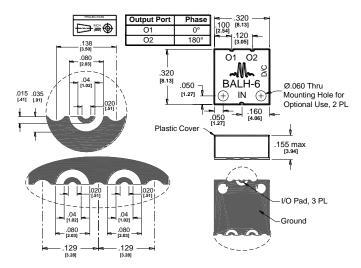
BALH-0006SMG

Features

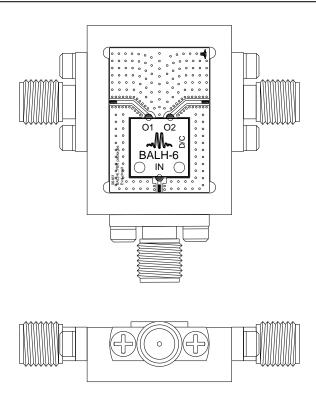
- 500 kHz to 6 GHz Balun (Balanced to Unbalanced Transformer)
- High 37 dBm 1-dB compression enables high power applications
- Tuned for Optimal Phase/Amplitude Balance
- Applications: Balanced Amplifiers, Baseband Digital Modulation, Signal Integrity
- BALH-0006SMG.s3p

Electrical Specifications - Specifications guaranteed from -55 to +100°C, measured in a 50Ω system.

Parameter	Frequency Range	Min	Тур	Max
Insertion Loss as a mode converter (dB)			2	3.5
Input 1 dB Compression (dBm)			37	
Nominal Phase Shift (Degrees)			180	
Amplitude Balance (dB)			0.2	1.2
Phase Balance (Degrees)	500 kHz to 6 GHz		3	10
Common Mode Rejection (dB)		17	30	
Isolation (dB)			6	
VSWR (Input)			2.1	
VSWR (Output)			1.2	
Risetime /Falltime (ps) ¹			22	


¹Specified as 90%/10%. Calculated from $\tau_{balun}^2 = (\tau_{out}^2 - \tau_{in}^2)$

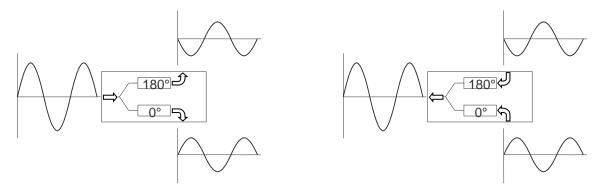
Model Number	Description	
BALH-0006SMG 500 kHz to 6 GHz Balun, High Power, Surface Mou		
EVAL-BALH-0006	Connectorized Evaluation Board, LEAD-FREE/RoHS COMPLIANT	



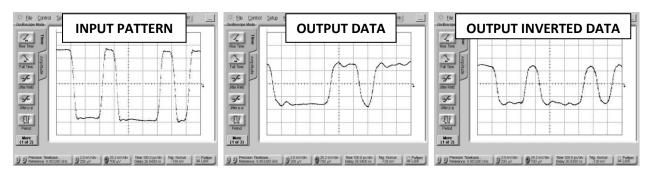
BALH-0006SMG

Page 2

Substrate material is 8-mil thick Rogers 4003, 1 Oz Electrodeposited Cu. I/O Pads & Ground Plane Finish is Gold Flash, 5 to 10 μ -inches, over Electroplated Nickel, 100-200 μ -inches, over Cu. See <u>BALSMG-PCB</u> for suggested PCB layout.


Evaluation Board outline

BALH-0006SMG


Page 3

Block Diagram

Single ended to differential

Differential to single ended

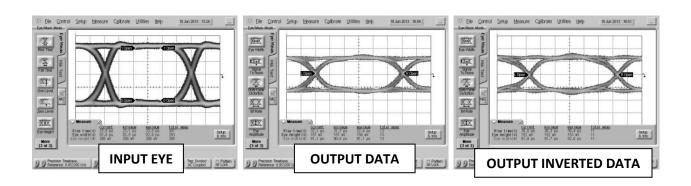


Fig. 1. Oscilloscope measurements of the BALH-0006SMG with a 10 Gb/s PRBS pattern. Bit pattern is measured with a 2^7 -1 PRBS input demonstrating extremely good pulse fidelity for both inverted and non-inverted output. Eye diagrams are taken with a 2^{31} -1 PRBS input demonstrating minimal eye distortion/closure afforded by the extremely low frequency operation of the balun (<500 kHz).

BALH-0006SMG

Page 4

Mixed Mode Scattering Parameters

Mixed mode scattering parameters are used to characterize differential circuits. For baluns, this means that the 0° and 180° ports become a single 100Ω differential port and the common port remains the same 50Ω common port. The two-port s-parameters of the balun are then characterized based on differential (d), common mode (c), or single-ended (s) signals. For example: Sds12 is the differential output response given a single ended input.

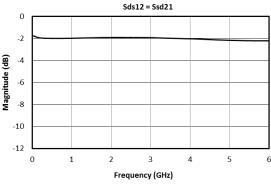


Fig. 2. Insertion loss as a mode converter

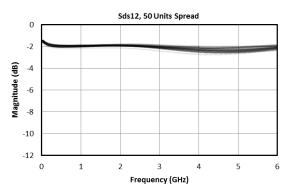


Fig. 3. Insertion loss as a mode converter across 50 units

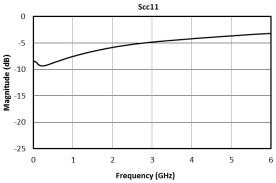


Fig. 4. Return loss of a common mode signal

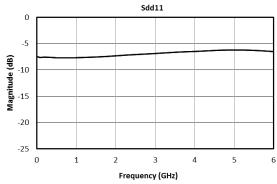


Fig. 5. Return loss of a differential signal

BALH-0006SMG

Page 5

0

-5

-15

-20

-25 **L**

1

Magnitude (dB)

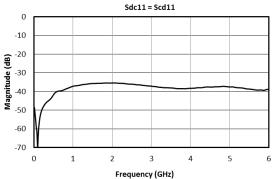


Fig. 6. Reflection converted between differential and common modes

Sss22

Frequency (GHz)
Fig. 8. Unbalanced port return loss

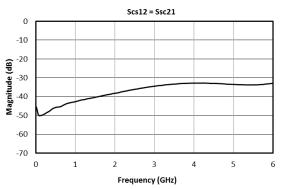


Fig. 7. Insertion loss of a common mode signal

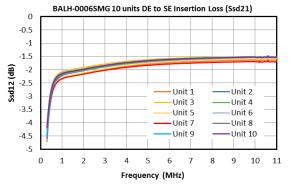


Fig. 9. Low frequency Insertion loss as a mode converter across 10 units

BALH-0006SMG

Page 6

Typical Performance Scattering Parameters

Three port scattering parameters measured as three single-ended 50Ω ports showing relationship between any two ports. For example: S21 and S31, often referred to as insertion loss of a balun, is the output response on ports 2 and 3 with an input stimulus on port 1.

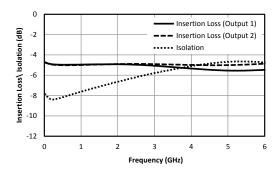


Fig. 10. Common to output port insertion loss and output to output port Isolation.

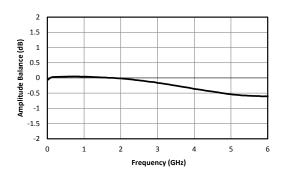


Fig. 12. Amplitude balance between output ports.

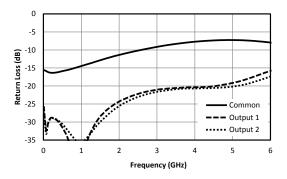


Fig. 11. Return loss for common port and output ports.

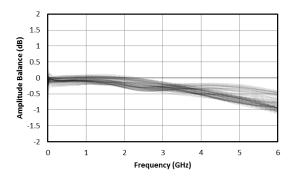


Fig. 13. Amplitude balance, 50 unit spread.

BALH-0006SMG

Page 7

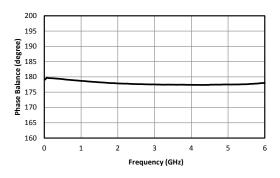


Fig. 14. Phase balance between output ports.

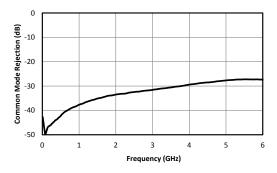
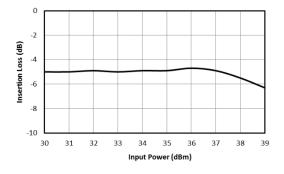



Fig.16. Common mode rejection.

Fig, 18. Output Compression

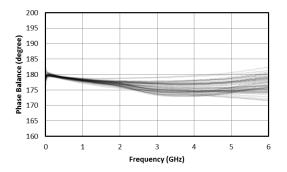


Fig. 15. Phase balance between output ports.

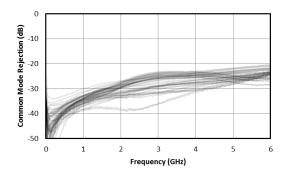


Fig.17. Common mode rejection.

BALH-0006SMG

Page 8

DC Interface

Port	Description	DC Interface Schematic	
Common Port / In (Unbalanced)	The common port is DC short to ground.	Common Port +	
Out 1 / 0° Port (Balanced)	The 0° port is DC short to ground.	0° Port (Balanced)	
Out 2 / 180° Port (Balanced)	The 180° port is DC short to ground.	180° Port (Balanced)	

Absolute Maximum Ratings				
Parameter	Maximum Rating			
DC Current	TBD			
RF Power Handling	33 dBm			
Operating Temperature	-55°C to +100°C			
Storage Temperature	-65°C to +125°C			

SURFACE-MOUNT BROADBAND BALUN

BALH-0006SMG

Page 9

DATASHEET NOTES:

1. Sdd22: differential return loss of the differential port driven with a differential signal

Sdc22: differential return loss of the differential port driven with a common signal

Sds21: insertion loss from a single ended input to a differential output

Scc22: common mode return loss of the differential port driven with a common signal

Scd22: common mode return loss of the differential port driven with a differential signal

Scs21: insertion loss from a single ended input to a common output

Sss11: single ended return loss

Ssd12: insertion loss from a differential signal to single ended output

Ssc12: insertion loss from a common signal to single ended output

Revision History

Revision code	Revision Date	Comment	
-	February 2013	Datasheet initial Release	
А	March 2019	Evaluation board outline added	
В	October 2019	Mixed Mode Scattering Parameters added	
С	April 2020	Unit Spread Graphs Added	
D	July 2020	Specs table update	
E	October 2020	Specs table update	