GaN on SiC HEMT Pulsed Power Transistor 500 W Peak, 960 to 1215 MHz, 128 µs Pulse, 10% Duty

Features

- GaN on SiC Depletion-Mode Transistor Technology
- Internally matched
- Common-Source configuration
- Broadband Class AB operation
- RoHS* Compliant and 260°C Reflow Compatible
- +50V Typical Operation
- MTTF = 600 years (T_J < 200°C)

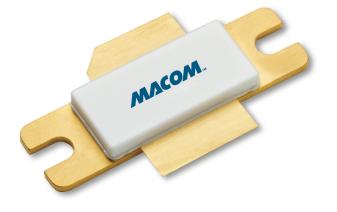
Applications

- Civilian Air Traffic Control (ATC), L-Band secondary radar for IFF and Mode-S avionics.
- Military radar for IFF and Data Links.

Description

The MAGX-000912-500L00 is a gold metalized matched Gallium Nitride (GaN) on Silicon Carbide (SiC) RF power transistor optimized for pulsed avionics and radar applications. Using state of the art wafer fabrication processes, these high performance transistors provide high gain. efficiency, bandwidth, and ruggedness over a wide bandwidth for today's demanding application needs. High breakdown voltages allow for reliable and stable operation under more extreme mismatch load conditions compared with older semiconductor technologies.

MAGX-000912-500L00


Ordering Information

Part Number	Description
MAGX-000912-500L00	Flanged
MAGX-000912-500L0S	Flangeless
MAGX-A00912-500L00	960 - 1215 MHz Evaluation Board

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

GaN on SiC HEMT Pulsed Power Transistor 500 W Peak, 960 to 1215 MHz, 128 µs Pulse, 10% Duty

Rev. V5

Typical RF Performance under standard operating conditions, Pout = 500 W (Peak)

Freq (MHz)	P _{IN} (W)	Gain (dB)	I _D (A)	Eff. (%)	RL (dB)	Droop (dB)	+1dB OD (W)	VSWR-S (3:1)	VSWR-T (5:1)
960	5.8	19.4	17.2	58.1	-6.4	0.4	563	S	Р
1025	4.9	20.1	16.2	61.4	-7.6	0.3	551	S	Р
1090	4.4	20.6	15.8	63.4	-9.6	0.3	560	S	Р
1150	4.4	20.6	17.0	58.7	-17.0	0.2	548	S	Р
1215	4.6	20.5	15.7	63.7	-12.6	0.2	558	S	Р

Electrical Specifications: Freq. = 960 - 1215 MHz, T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units	
RF Functional Tests: V _{DD} = 50 V	RF Functional Tests: $V_{DD} = 50 V$; $I_{DQ} = 400 mA$; Pulse = 128 µs / 10%						
Input Power	P _{OUT} = 500 W Peak (50 W avg.)	P _{IN}	-	5.2	7.9	Wpk	
Power Gain	P _{OUT} = 500 W Peak (50 W avg.)	G _P	18	19.8	-	dB	
Drain Efficiency	P _{OUT} = 500 W Peak (50 W avg.)	η_{D}	51	60	-	%	
Pulse Droop	P _{OUT} = 500 W Peak (50 W avg.)	Droop	-	0.3	0.6	dB	
Load Mismatch Stability	P _{OUT} = 500 W Peak (50 W avg.)	VSWR-S	-	3:1	-	-	
Load Mismatch Tolerance	P _{OUT} = 500 W Peak (50 W avg.)	VSWR-T	-	5:1	-	-	

Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC Characteristics						
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 175 \text{ V}$	I _{DS}	-	1.0	30	mA
Gate Threshold Voltage	$V_{DS} = 5 V, I_{D} = 75 mA$	V _{GS (TH)}	-5	-3.1	-2	V
Forward Transconductance	$V_{DS} = 5 \text{ V}, \ I_D = 17.5 \text{ mA}$	G _M	12.5	19.2	-	S
Dynamic Characteristics						
Input Capacitance	Not applicable - Input matched	CISS	N/A	N/A	N/A	pF
Output Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, F = 1 \text{ MHz}$	C _{OSS}	-	55	-	pF
Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, F = 1 \text{ MHz}$	C _{RSS}	-	5.5	-	pF

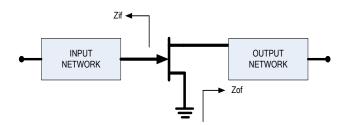
M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

GaN on SiC HEMT Pulsed Power Transistor 500 W Peak, 960 to 1215 MHz, 128 µs Pulse, 10% Duty

Absolute Maximum Ratings^{1,2,3,4}

Parameter	Limit
Supply Voltage (V _{DD})	+65 V
Supply Voltage (V _{GS})	-8 to -2 V
Supply Current (I _{DMAX})	27.3 A
Input Power (P _{IN})	P _{IN} (nominal) + 3 dB
Absolute Max. Junction/Channel Temp	200°C
Pulsed Power Dissipation at 85 °C	875 W
Thermal Resistance, (T _J = 70 °C) V _{DD} = 50 V, I_{DQ} = 400 mA, Pout = 500 W, 128 µs Pulse / 10% Duty	0.20 °C/W
Operating Temp	-40 to +95°C
Storage Temp	-65 to +150°C
Mounting Temperature	See solder reflow profile
ESD Min Charged Device Model (CDM)	1300 V
ESD Min Human Body Model (HBM)	4000 V

1. Operation of this device above any one of these parameters may cause permanent damage.


2. Input Power Limit is +3 dB over nominal drive required to achieve P_{OUT} = 500 W.

3. Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.

4. For saturated performance it recommended that the sum of $(3^*V_{DD} + abs(V_{GG})) < 175 \text{ V}.$

F (MHz)	Z _{IF} (Ω)	Z _{OF} (Ω)
960	1.1 - j1.1	1.8 + j0.8
1025	1.4 - j0.7	2.2 + j0.8
1090	1.7 - j0.5	2.4 + j0.6
1150	2.1 - j0.4	2.3 + j0.3
1215	2.4 - j0.7	1.9 + j0.2

Test Fixture Impedances

Correct Device Sequencing

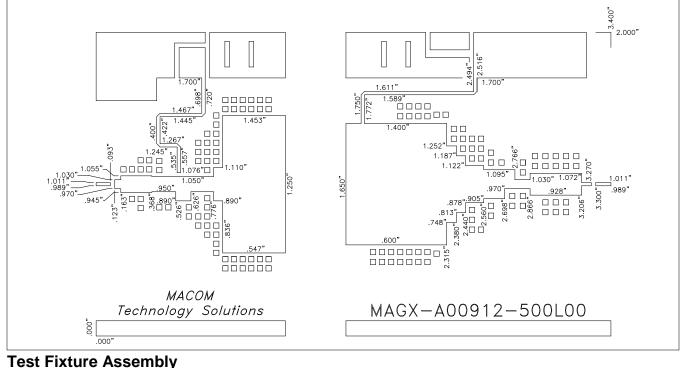
Turning the device ON

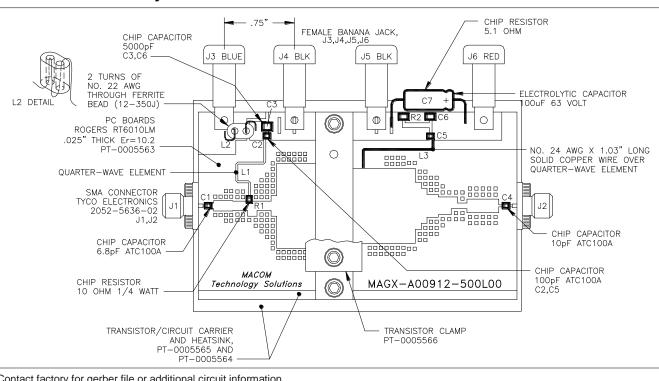
- 1. Set V_{GS} to the pinch-off (V_P), typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}

3


M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.


MACOM

GaN on SiC HEMT Pulsed Power Transistor 500 W Peak, 960 to 1215 MHz, 128 µs Pulse, 10% Duty

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

Contact factory for gerber file or additional circuit information.

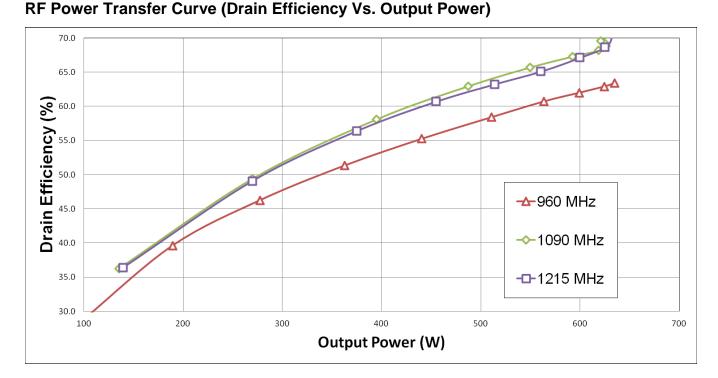
4

Output Power (W) 300 500

100

0.0

GaN on SiC HEMT Pulsed Power Transistor 500 W Peak, 960 to 1215 MHz, 128 µs Pulse, 10% Duty


2.0

700 600

4.0

6.0

8.0

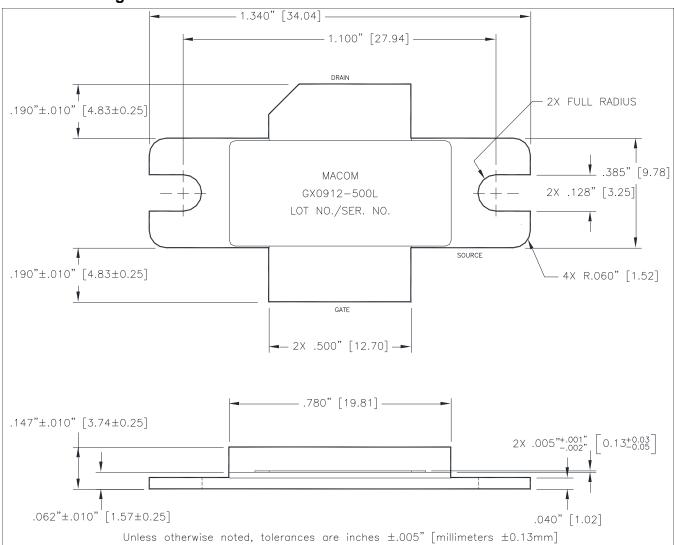
M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

MACOM

-**∆**-960 MHz

→1090 MHz

-D-1215 MHz

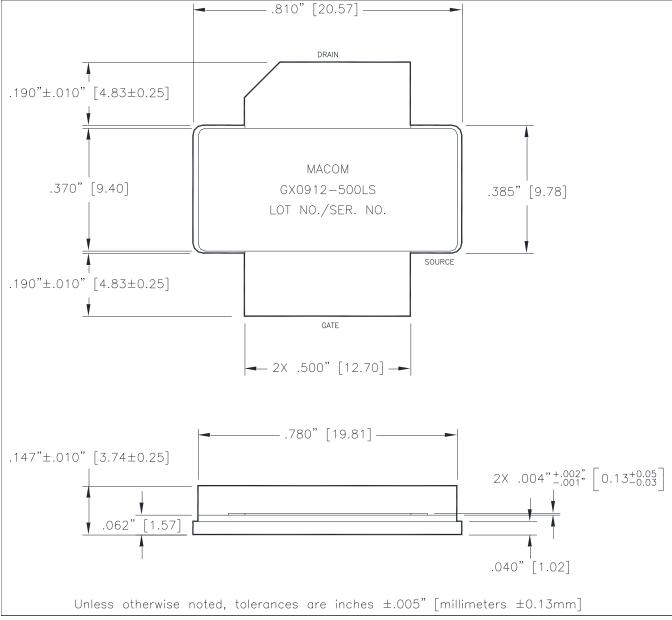

10.0

Rev. V5

12.0

GaN on SiC HEMT Pulsed Power Transistor 500 W Peak, 960 to 1215 MHz, 128 µs Pulse, 10% Duty

Outline Drawing MAGX-000912-500L00


6

ΜΛΟΟΜ

GaN on SiC HEMT Pulsed Power Transistor 500 W Peak, 960 to 1215 MHz, 128 µs Pulse, 10% Duty

Outline Drawing MAGX-000912-500L0S

Rev. V5

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

7

