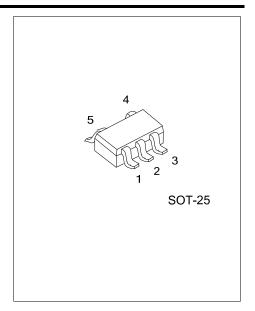
UNISONIC TECHNOLOGIES CO., LTD

LR1143

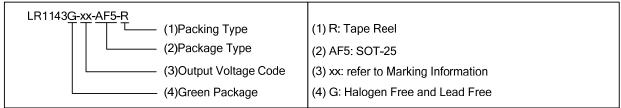

LINEAR INTEGRATED CIRCUIT

HIGH PSRR, LOW DROPOUT, 400mA ADJUSTABLE LDO **REGULATOR**

DESCRIPTION

The UTC LR1143 is a CMOS-based 400mA voltage regulator with low supply current, low dropout, adjustable output voltage, The device offering high PSRR and low dropout. The quiescent current is as low as 35µA, further prolonging the battery life. The UTC LR1143 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in handheld wireless devices.

The UTC LR1143 consumes typical 0.7µA in shutdown mode. The other features include low dropout voltage, high output accuracy, current limit protection, and enable/shutdown control.

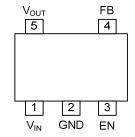


FEATURES

- * Wide operating voltage range: 3.0V~5.5V
- * Adjustable output voltage
- * Enable/shutdown control
- * Low-noise for RF application
- * Ultra-Fast response in line/load transient
- * Current limit protection
- * Output only 1µF capacitor required for stability
- * High power supply rejection ratio

ORDERING INFORMATION

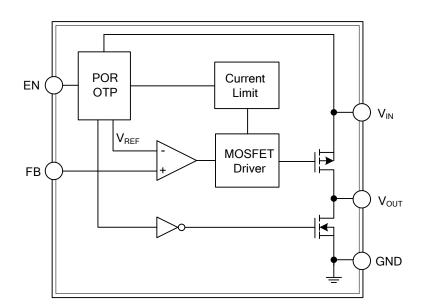
Ordering Number	Package	Packing	
LR1143G-xx-AF5-R	SOT-25	Tape Reel	
Note: xx: Output Voltage, refer to Marking Information.			



www.unisonic.com.tw 1 of 4

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING			
SOT-25	AD: ADJ	SVXXG Voltage Code			


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V_{IN}	Voltage Input.
2	GND	Ground.
3	EN	Chip Enable (Active High).
4	FB	Output Voltage Feedback.
5	V _{OUT}	Voltage Output.

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Input Voltage	V_{IN}	6	V
EN Input Voltage		6	V
Power Dissipation (T _A =25°C)	P _D	0.4	W
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

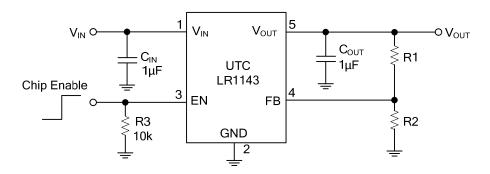
■ RECOMMENDED OPERATING CONDITIONS (Note 3)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Ambient Temperature Range	T _A	-20		85	°C

Note: The device is not guaranteed to function outside its operating conditions.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	260	°C/W


Note: θ_{JA} is measured in the natural convection at T_A =25°C on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

■ ELECTRICAL CHARACTERISTICS

 $(V_{IN}\text{=}3.7V, T_A\text{=}25^{\circ}C,\ C_{IN}\text{=}C_{OUT}\text{=}1\mu\text{F},\ I_{OUT}\text{=}20\text{mA},\ unless otherwise specified})$

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range		V _{IN}		3.0		5.5	V
Reference Voltag	е	V_{REF}		1.188	1.200	1.212	V
Quiescent Currer	nt	ΙQ	I _{OUT} =0mA		35	50	μA
Shutdown Currer	ıt	I _{SHDN}	V _{EN} =0V		0.7	1.5	μA
Current Limit		I _{LIM}	3.0V≤V _{IN} < 5.5V		650		mA
Dropout Voltage	Dropout Voltage		I _{OUT} =400mA		800		mV
Load Regulation		ΔV_{LOAD}	$1 \text{mA} < I_{\text{OUT}} < 400 \text{mA}$ $3.0 \text{V} \le V_{\text{IN}} < 5.5 \text{V}$			1	%
Line Regulation		ΔV_{LINE}	$V_{IN}=(V_{OUT} + 0.5V)\sim 5.5V,$ $I_{OUT}=1$ mA		0.01	0.2	%/V
EN Threshold	Logic-Low Voltage	V _{IL}		0		0.6	V
ENTITIESTICIO	Logic-High Voltage	V _{IH}		1.6		5.5	V
EN Pin Current	· • • • • • • • • • • • • • • • • • • •				0.1	1	μA
FB Pin Current		I _{FB}			0.1	1	μA
Power Supply Rejection Ratio		PSRR	f=1kHz, I _{OUT} =10mA		67		dB
			f=10kHz, I _{OUT} =10mA		56		dB
Output Noise Voltage		V _{ON}	V_{OUT} =1.5V, C_{OUT} =1 μ F, I_{OUT} =0mA		30		μV_{RMS}

■ TYPICAL APPLICATION CIRCUIT

$$Vout = VFB (1 + \frac{R1}{R2})$$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.