Monolithic Amplifier

GVA-93+

 50Ω 0.01 to 9 GHz

The Big Deal

- Ultra broadband performance
- Excellent Gain Flatness
- · Broadband without external matching components

SOT-89 PACKAGE

Product Overview

GVA-93+ (RoHS compliant) is an advanced ultra-wideband amplifier fabricated using GaAs HBT technology and offers excellent gain flatness over a broad frequency range. In addition, the GVA-93+ has good input and output return loss over this frequency range without the need for external matching components. Lead finish is tin-silver over nickel. It has repeatable performance from lot to lot and is enclosed in a SOT-89 package for very good thermal performance.

Key Features

Feature	Advantages	
Ultra Broad Band: 0.01 to 9 GHz	Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX in a single amplifier.	
Ultra Flat Gain ±0.7 dB typ: 0.05 - 8 GHz	Ultra Flat Gain, eliminates need for compensation networks to achieve published results	
No External Matching Components Required	GVA-93+ provides good Input and Output Return Loss of 12-28 dB over 0.05 - 6 GHz without the need for any external matching components	
Excellent ESD HBM: class 1C (1000 to <2000V) MM: class M2 (100 to <200V)	Simplifies ESD handling.	

Monolithic Amplifier

0.01-9 GHz

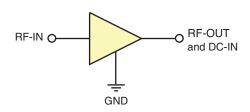
Product Features

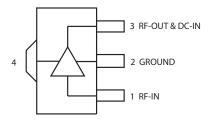
- Excellent Gain Flatness, ±0.7 dB, 0.05-8 GHz
- Gain, 16.9 dB typ. at 2 GHz
- Excellent return loss, 20 dB typ., 2 GHz

Typical Applications

- Base station infrastructure
- Test instruments
- MMDS & Wireless LAN
- LTE
- Satellite communication
- Avionics

CASE STYLE: DF782


GVA-93+


+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

GVA-93+ (RoHS compliant) is an advanced ultra wideband amplifier fabricated using GaAs HBT technology and offers a broad frequency range. In addition, the GVA-93+ has good input and output return loss over this frequency range without the need for external matching components. Lead finish is tin-silver over nickel. It has repeatable performance from lot to lot and is enclosed in a SOT-89 package for very good thermal performance.

simplified schematic and pin description

Function	Pin Number	Description	
RF IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
RF-OUT and DC-IN	F-OUT and DC-IN 3 RF output and bias pin. DC voltage is present on this pin; therefore a DC capacitor is necessary for proper operation. An RF choke is needed to fee without loss of RF signal due to the bias connection, as shown in "Recomplication Circuit", Fig. 2		
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.	

Electrical Specifications at 25°C and Vcc=5V, R= 16.5Ω unless noted

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		0.01		9.0	GHz
Gain	0.05	_	16.2	_	dB
	0.85	_	17.2	_	
	2.0	15.2	16.9	18.6	
	6.0	_	16.4	_	
	8.0	_	16.3	_	
	9.0	_	15.2	_	
Gain Flatness	0.05-8		±0.7		dB
Input Return Loss	0.05	_	12.7	_	dB
	0.85	_	24.9	_	
	2.0	16.0	23.8	_	
	6.0	_	22.2	_	
	8.0	_	9.2	_	
	9.0	_	7.1	_	
Output Return Loss	0.05		14.4		dB
	0.85		31.0		
	2.0		23.5		
	6.0		15.5		
	8.0		9.2		
	9.0		7.0		
Reverse Isolation	6.0		20.7		dB
Output Power at 1dB Compression	0.05		15.9		dBm
·	0.85		16.3		
	2.0		16.2		
	6.0		13.4		
	8.0		10.3		
	9.0		9.0		
Output IP3	0.2		30.2		dBm
	0.85		31.1		
	2.0		29.9		
	6.0		24.5		
	8.0		21.8		
	9.0		20.3		
Noise Figure	0.2		3.8		dB
	0.85		3.9		
	2.0		4.0		
	6.0		4.4		
	8.0		4.9		
	9.0		5.3		
Supply Operating Voltage (Vcc)		4.8	5.0	5.2	V
Device Operating Current			52	57	mA
Device Current Variation vs. Temperature ²			56		μΑ/°C
Device Current Variation vs. Voltage			0.020		mA/mW
Thermal Resistance, junction-to-ground lead			156		°C/W

⁽¹⁾ Measured on Mini-Circuits Characterization test board TB-665+. See Characterization Test Circuit (Fig. 1)

Absolute Maximum Ratings(3)

Parameter	Ratings		
Operating Temperature (ground lead)	-40°C to 85°C		
Storage Temperature	-65°C to 150°C		
Operating Current at 5V (Vcc) & 16.5Ω resistor	100 mA		
Power Dissipation	0.34 W		
Input Power (CW)	28 dBm (5 min max.) 11 dBm (continuous)		
DC Voltage on Pin 3	6 V		

⁽⁹⁾ Permanent damage may occur if any of these limits are exceeded.
Electrical maximum ratings are not intended for continuous normal operation.

 $^{^{(2)}}$ (Current at 85°C — Current at -45°C)/130

Characterization Test Circuit

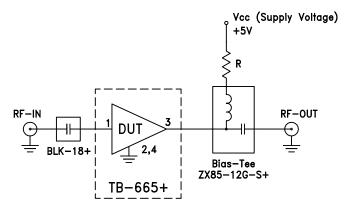


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-665+) Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer. (R=16.5Ω)

Conditions:

- 1. Gain and Return loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.

Recommended Application Circuit

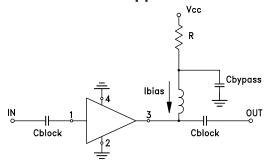
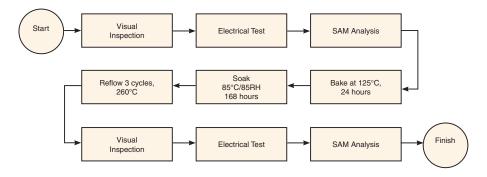


Fig 2. Test Board includes case, connectors, and components soldered to PCB (Cblock=0.001 μ F, Cbypass=0.1 μ F, R=16.5 Ω)

Product Marking

Marking may contain other features or characters for internal lot control

Additional Detailed Technical Information additional information is available on our dash board. To access this information click here				
	Data Table			
Performance Data	Swept Graphs			
	S-Parameter (S2P Files) Data Set (.zip file)			
5-200 MHz Operation	See Application Note AN-60-087			
Case Style	DF782 (SOT 89) Plastic package, exposed paddle Lead Finish: Tin-Silver over nickel			
Tape & Reel	F55			
Standard quantities available on reel	7" reels with 20, 50, 100, 200, 500 or 1K devices			
Suggested Layout for PCB Design	PL-370			
Evaluation Board	TB-781-1+			
Environmental Ratings	ENV08T1			


ESD Rating

Human Body Model (HBM): Class 1C (1000 to <2000V) in accordance with ANSI/ESD STM 5.1 - 2001

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

