# Rail-to-Rail Output, 3 MHz BW Operational Amplifier

The NCS2007 series operational amplifiers provide rail–to–rail output operation, 3 MHz bandwidth, and are available in single, dual, and quad configurations. Rail–to–rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The NCS2007 can operate on supply voltages as low as 2.7 V over the temperature range of –40°C to  $125^{\circ}\text{C}$ . At a 2.7 V supply, the high bandwidth provides a slew rate of 2.8 V/µs while only consuming 405 µA of quiescent current per channel. The wide supply range allows the NCS2007 to run on supply voltages as high as 36 V, making it ideal for a broad range of applications. Since this is a CMOS device, high input impedance and low bias currents make it ideal for interfacing to a wide variety of signal sensors. The NCS2007 devices are available in a variety of compact packages.

#### **Features**

- Rail-To-Rail Output
- Wide Supply Range: 2.7 V to 36 V
- Wide Bandwidth: 3 MHz typical at  $V_S = 2.7 \text{ V}$
- High Slew Rate: 2.8 V/ $\mu$ s typical at V<sub>S</sub> = 2.7 V
- Low Supply Current: 405  $\mu$ A per channel at  $V_S = 2.7 \text{ V}$
- Low Input Bias Current: 5 pA typical
- Wide Temperature Range: -40°C to 125°C
- Available in a variety of packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### **Applications**

- Current Sensing
- Signal Conditioning
- Automotive

#### **End Products**

- Notebook Computers
- Portable Instruments
- Power Supplies



### ON Semiconductor®

http://onsemi.com





SOT-553 CASE 463B

TSOP-5 CASE 483





Micro8<sup>™</sup> CASE 846AH

SOIC-8 CASE 751





TSSOP-8 CASE 948S

UDFN8 CASE 517AC





TSSOP-14 CASE 948G

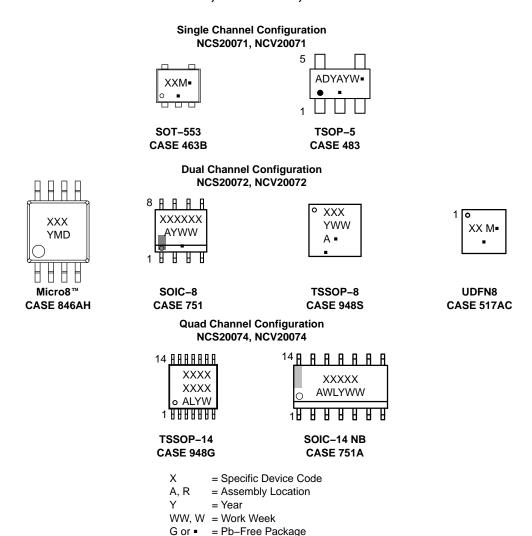
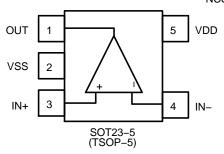
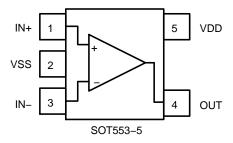
SOIC-14 NB CASE 751A

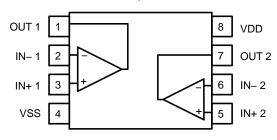
#### **DEVICE MARKING INFORMATION**

See general marking information in the device marking section on page 2 of this data sheet.

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 4 of this data sheet.



Figure 1. Marking Diagrams

#### Single Channel Configuration NCS20071, NCV20071





# Dual Channel Configuration NCS20072, NCV20072



#### Quadruple Channel Configuration NCS20074, NCV20074

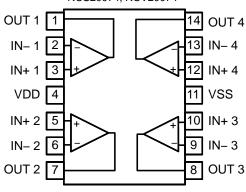



Figure 2. Pin Connections

#### **ORDERING INFORMATION**

| Device          | Configuration | Automotive | Marking      | Package                          | Shipping <sup>†</sup> |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
|-----------------|---------------|------------|--------------|----------------------------------|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|----------------------|----------------------|
| NCS20071SN2T1G* |               | No         | *            | SOT23-5<br>(TSOP-5)<br>(Pb-Free) | 3000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCS20071*       | O's alla      |            | *            | SOT553-5<br>(Pb-Free)            | 4000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCV20071SN2T1G* | Single        | Yes        | *            | SOT23-5<br>(TSOP-5)<br>(Pb-Free) | 3000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCV20071*       |               | 163        | *            | SOT553-5<br>(Pb-Free)            | 4000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCS20072DMR2G*  |               |            | *            | Micro8 (MSOP8)<br>(Pb-Free)      | 4000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCS20072DR2G*   |               |            | *            | SOIC-8<br>(Pb-Free)              | 2500 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCS20072DTBR2G* |               | No -       | *            | TSSOP-8<br>(Pb-Free)             | 3000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCS20072*       | Ī .           |            | *            | UDFN8<br>(Pb-Free)               | 3000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCV20072DMR2G*  | Dual          |            | *            | Micro8 (MSOP8)<br>(Pb-Free)      | 4000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCV20072DR2G*   |               |            | *            | SOIC-8<br>(Pb-Free)              | 2500 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCV20072DTBR2G* |               | Yes        | Yes          | Yes                              | Yes                   | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | * | TSSOP-8<br>(Pb-Free) | 3000 / Tape and Reel |
| NCV20072*       |               |            | *            | UDFN8<br>(Pb-Free)               | 3000 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCS20074DR2G    |               |            | NCS20074     | SOIC-14<br>(Pb-Free)             | 2500 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCS20074DTBR2G  | 0.01          | No         | NCS2<br>0074 | TSSOP-14<br>(Pb-Free)            | 2500 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCV20074DR2G    | Quad          | V          | NCS20074     | SOIC-14<br>(Pb-Free)             | 2500 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |
| NCV20074DTBR2G  |               | Yes        | NCS2<br>0074 | TSSOP-14<br>(Pb-Free)            | 2500 / Tape and Reel  |     |     |     |     |     |     |     |     |     |     |     |     |     |   |                      |                      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
\*Contact local sales office for more information

#### **ABSOLUTE MAXIMUM RATINGS** (Note 1)

| Rating                                                                       | Symbol                                   | Limit                                          | Unit |
|------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|------|
| Supply Voltage (V <sub>DD</sub> – V <sub>SS</sub> ) (Note 2)                 | V <sub>S</sub>                           | 40                                             | V    |
| Input Voltage                                                                | V <sub>I</sub>                           | V <sub>SS</sub> – 0.2 to V <sub>DD</sub> + 0.2 | V    |
| Differential Input Voltage                                                   | V <sub>ID</sub>                          | ±V <sub>S</sub>                                | V    |
| Maximum Input Current                                                        | I <sub>I</sub>                           | ±10                                            | mA   |
| Maximum Output Current                                                       | I <sub>O</sub> ±100                      |                                                | mA   |
| Continuous Total Power Dissipation (Note 2)                                  | P <sub>D</sub>                           | 200                                            | mW   |
| Maximum Junction Temperature                                                 | TJ                                       | 150                                            | °C   |
| Storage Temperature Range                                                    | T <sub>STG</sub>                         | -65 to 150                                     | °C   |
| Mounting Temperature (Infrared or Convection – 20 sec)                       | T <sub>mount</sub>                       | 260                                            | °C   |
| ESD Capability (Note 3)  Human Body Model Machine Model Charged Device Model | ESD <sub>HBM</sub><br>ESD <sub>CDM</sub> | 2000<br>150<br>1000 (C6)                       | V    |
| Latch-Up Current (Note 3)                                                    | I <sub>LU</sub>                          | 100                                            | mA   |
| Moisture Sensitivity Level (Note 3)                                          | MSL                                      | Level 1                                        |      |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
- Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability.
- 3. This device series incorporates ESD protection and is tested by the following methods:
  - ESD Human Body Model tested per ANSI/ANSI/ESDA/JEDEC JS-001-2010 (AEC-Q100-002)
  - ESD Machine Model tested per JESD22–A115 (AEC–Q100–003)
  - ESD Charged Device Model tested per ANSI/ESD S5.3.1-2009 (AEC-Q100-011)
- Latch-up Current tested per JEDEC standard: JESD78 (AEC-Q100-004)
   Moisture Sensitivity Level tested per IPC/JEDEC standard: J-STD-020A

# THERMAL INFORMATION

| Parameter           | Symbol            | Package       | Value | Unit |
|---------------------|-------------------|---------------|-------|------|
|                     |                   | SOT23-5/TSOP5 | 235   | °C/W |
|                     |                   | SOT553-5      | 250   |      |
|                     | $\theta_{\sf JA}$ | Micro8/MSOP8  | 238   |      |
| hunding to Ambient  |                   | SOIC-8        | 190   |      |
| Junction-to-Ambient |                   | TSSOP-8       | 140   |      |
|                     |                   | UDFN-8        | 350   |      |
|                     |                   | SOIC-14       | 156   |      |
|                     |                   | TSSOP-14      | 190   |      |

#### **OPERATING RANGES**

| Parameter                  | Symbol           | Min             | Max                    | Unit |
|----------------------------|------------------|-----------------|------------------------|------|
| Operating Supply Voltage   | Vs               | 2.7             | 36                     | V    |
| Differential Input Voltage | V <sub>ID</sub>  |                 | V <sub>S</sub>         | V    |
| Input Common Mode Range    | V <sub>ICM</sub> | V <sub>SS</sub> | V <sub>DD</sub> – 1.35 | V    |
| Ambient Temperature        | T <sub>A</sub>   | -40             | 125                    | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

**ELECTRICAL CHARACTERISTICS AT V**<sub>S</sub> = 2.7 V  $T_A = 25^{\circ}\text{C}$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range,  $T_A = -40^{\circ}\text{C}$  to 125°C. (Notes 6, 7)

| Parameter                            | Symbol               | Cond                                                    | litions                                           | Min | Тур   | Max  | Unit               |
|--------------------------------------|----------------------|---------------------------------------------------------|---------------------------------------------------|-----|-------|------|--------------------|
| INPUT CHARACTERISTICS                |                      |                                                         | -                                                 |     | 1 71  |      | 1                  |
|                                      |                      |                                                         |                                                   |     | 1.3   | ±3   | mV                 |
| Input Offset Voltage                 | Vos                  |                                                         |                                                   |     |       | ±4   | mV                 |
| Offset Voltage Drift                 | ΔV <sub>OS</sub> /ΔT | T <sub>A</sub> = 25°C                                   | C to 125°C                                        |     | 2     |      | μV/°C              |
| 1                                    |                      |                                                         |                                                   |     | 5     | 200  | рА                 |
| Input Bias Current                   | I <sub>IB</sub>      | No                                                      | te 7                                              |     |       | 1500 | рА                 |
| Innut Offact Current                 |                      | No                                                      | to 7                                              |     | 2     | 75   | pА                 |
| Input Offset Current                 | los                  | INO                                                     | te 7                                              |     |       | 175  | рА                 |
| Channel Separation                   | XTLK                 | С                                                       | OC                                                |     | 115   |      | dB                 |
| Differential Input Resistance        | R <sub>ID</sub>      |                                                         |                                                   |     | 50    |      | GΩ                 |
| Common Mode Input Resistance         | R <sub>IN</sub>      |                                                         |                                                   |     | 5     |      | GΩ                 |
| Differential Input Capacitance       | C <sub>ID</sub>      |                                                         |                                                   |     | 1.5   |      | pF                 |
| Common Mode Input Capacitance        | C <sub>CM</sub>      |                                                         |                                                   |     | 3.5   |      | pF                 |
| Common Mode Paination Patin          | CMRR                 | \/ - 0 \/ to                                            | V <sub>CM</sub> = 0 V to V <sub>DD</sub> – 1.35 V |     | 110   |      | dB                 |
| Common Mode Rejection Ratio          | CIVIKK               | v <sub>CM</sub> = 0 v to                                | V <sub>DD</sub> = 1.35 V                          | 69  |       |      | QD.                |
| OUTPUT CHARACTERISTICS               |                      |                                                         |                                                   |     |       |      |                    |
| Open Loop Voltage Gain               | ۸                    |                                                         |                                                   | 96  | 118   |      | dB                 |
| Open Loop voltage Gain               | $A_{VOL}$            |                                                         |                                                   | 86  |       |      | UD UD              |
| Output Current Canability            | I-                   | Op amp sin                                              | king current                                      |     | 70    |      | mA                 |
| Output Current Capability            | lo                   | Op amp sou                                              | rcing current                                     |     | 50    |      | IIIA               |
| Output Voltage High                  | V                    | Voltage output owi                                      | ng from positive roil                             |     | 0.006 | 0.15 | \/                 |
| Output Voltage High                  | V <sub>OH</sub>      | voltage output swi                                      | ng from positive rail                             |     |       | 0.22 | V                  |
| Output Voltage Low                   | Va                   | Voltago output swir                                     | ng from negative rail                             |     | 0.005 | 0.15 | V                  |
| Output voltage Low                   | V <sub>OL</sub>      | voltage output swii                                     | ig nom negative rail                              |     |       | 0.22 | V                  |
| AC CHARACTERISTICS                   |                      |                                                         |                                                   |     |       |      |                    |
| Unity Gain Bandwidth                 | UGBW                 | C <sub>L</sub> =                                        | 25 pF                                             |     | 3     |      | MHz                |
| Slew Rate at Unity Gain              | SR                   | C <sub>L</sub> =                                        | 20 pF                                             |     | 2.8   |      | V/μs               |
| Phase Margin                         | $\phi_{\text{m}}$    | C <sub>L</sub> =                                        | 25 pF                                             |     | 50    |      | 0                  |
| Gain Margin                          | A <sub>m</sub>       | C <sub>L</sub> =                                        | 25 pF                                             |     | 14    |      | dB                 |
| Settling Time                        | +-                   | $V_O = 1 \text{ Vpp},$                                  | Settling time to 0.1%                             |     | 0.6   |      | 6                  |
| Settling Time                        | t <sub>S</sub>       | Gain = 1, C <sub>L</sub> = 20 pF Settling time to 0.01% |                                                   |     | 1.2   |      | μS                 |
| NOISE CHARACTERISTICS                |                      |                                                         |                                                   |     |       |      |                    |
| Total Harmonic Distortion plus Noise | THD+N                | $V_{IN} = 0.5 \text{ Vpp, f}$                           | = 1 kHz, Av = 1                                   |     | 0.05  |      | %                  |
| Input Referred Voltage Noise         |                      | f = 1 kHz                                               |                                                   |     | 30    |      | nV/√Hz             |
| input Referred voltage Noise         | e <sub>n</sub>       | f = 10 kHz                                              |                                                   |     | 20    |      | 110/ 1112          |
| Input Referred Current Noise         | i <sub>n</sub>       | f = 1 kHz                                               |                                                   |     | 0.25  |      | fA/√ <del>Hz</del> |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

<sup>7.</sup> Performance guaranteed over the indicated operating temperature range by design and/or characterization.

# ELECTRICAL CHARACTERISTICS AT $V_S = 2.7 \text{ V}$

 $T_A = 25^{\circ}\text{C}$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply}$  unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range,  $T_A = -40^{\circ}\text{C}$  to 125°C. (Notes 6, 7)

| Parameter                       | Symbol                              | Conditions           |  | Min | Тур | Max | Unit |
|---------------------------------|-------------------------------------|----------------------|--|-----|-----|-----|------|
| SUPPLY CHARACTERISTICS          |                                     |                      |  |     |     |     |      |
| Davis Over la Daia etia a Datia | DODD                                | Natard               |  | 114 | 135 |     | 4D   |
| Power Supply Rejection Ratio    | PSRR                                | No Load              |  | 100 |     |     | dB   |
| D                               | I <sub>DD</sub> Per channel, no loa | Daniel and a land    |  |     | 405 | 525 | •    |
| Power Supply Quiescent Current  |                                     | Per channel, no load |  |     |     | 625 | μΑ   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 6. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 7. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

### **ELECTRICAL CHARACTERISTICS AT V<sub>S</sub> = 5 V**

 $T_A = 25^{\circ}\text{C}$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range,  $T_A = -40^{\circ}\text{C}$  to 125°C. (Notes 8, 9)

| Parameter                      | Symbol                   | Conditions                                         | Min | Тур   | Max  | Unit  |
|--------------------------------|--------------------------|----------------------------------------------------|-----|-------|------|-------|
| INPUT CHARACTERISTICS          |                          |                                                    | •   |       |      |       |
| Innut Offact Valtage           | V                        |                                                    |     | 1.3   | ±3   | mV    |
| Input Offset Voltage           | V <sub>OS</sub>          |                                                    |     |       | ±4   | mV    |
| Offset Voltage Drift           | $\Delta V_{OS}/\Delta T$ | T <sub>A</sub> = 25°C to 125 °C                    |     | 2     |      | μV/°C |
| Input Bias Current             | _                        | Note 9                                             |     | 5     | 200  | рА    |
| nput bias current              | I <sub>IB</sub>          | Note 9                                             |     |       | 1500 | рA    |
| Input Offset Current           | 1                        | Note 9                                             |     | 2     | 75   | pА    |
| Input Onset Current            | los                      | Note 9                                             |     |       | 175  | pА    |
| Channel Separation             | XTLK                     | DC                                                 |     | 115   |      | dB    |
| Differential Input Resistance  | R <sub>ID</sub>          |                                                    |     | 50    |      | GΩ    |
| Common Mode Input Resistance   | R <sub>IN</sub>          |                                                    |     | 5     |      | GΩ    |
| Differential Input Capacitance | C <sub>ID</sub>          |                                                    |     | 1.5   |      | pF    |
| Common Mode Input Capacitance  | C <sub>CM</sub>          |                                                    |     | 3.5   |      | pF    |
| Common Made Deigetien Detic    | OMPD                     | V                                                  | 105 | 125   |      | 10    |
| Common Mode Rejection Ratio    | CMRR                     | $V_{CM} = 0 \text{ V to } V_{DD} - 1.35 \text{ V}$ | 80  |       |      | dB    |
| OUTPUT CHARACTERISTICS         |                          |                                                    |     |       |      |       |
| Open Loop Voltage Gain         | ۸                        |                                                    | 96  | 120   |      | dB    |
| Open Loop voltage Gain         | A <sub>VOL</sub>         |                                                    | 86  |       |      | uБ    |
| Output Compat Canability       |                          | Op amp sinking current                             |     | 50    |      | A     |
| Output Current Capability      | I <sub>O</sub>           | Op amp sourcing current                            |     | 60    |      | mA    |
| Output Valtage Lligh           | V                        | Voltage output outing from positive and            |     | 0.013 | 0.20 | V     |
| Output Voltage High            | V <sub>OH</sub>          | Voltage output swing from positive rail            |     |       | 0.25 | ]     |
| Output Valtage Law             | V                        | Voltage output output from pageting and            |     | 0.01  | 0.10 | \/    |
| Output Voltage Low             | $V_{OL}$                 | Voltage output swing from negative rail            |     |       | 0.15 | ·     |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 8. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 9. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

# **ELECTRICAL CHARACTERISTICS AT V<sub>S</sub> = 5 V**

 $T_A = 25^{\circ}\text{C}$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid}$ -supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range,  $T_A = -40^{\circ}\text{C}$  to 125°C. (Notes 8, 9)

| Parameter                            | Symbol          | Cond                         | litions                | Min | Тур   | Max | Unit                 |  |
|--------------------------------------|-----------------|------------------------------|------------------------|-----|-------|-----|----------------------|--|
| AC CHARACTERISTICS                   |                 | •                            | •                      |     | •     |     | •                    |  |
| Unity Gain Bandwidth                 | UGBW            | C <sub>L</sub> =             | 25 pF                  |     | 3.2   |     | MHz                  |  |
| Slew Rate at Unity Gain              | SR              | C <sub>L</sub> =             | 20 pF                  |     | 2.7   |     | V/μs                 |  |
| Phase Margin                         | $\phi_{m}$      | C <sub>L</sub> =             | 25 pF                  |     | 50    |     | 0                    |  |
| Gain Margin                          | A <sub>m</sub>  | C <sub>L</sub> =             | 25 pF                  |     | 14    |     | dB                   |  |
| 0.48                                 |                 | $V_O = 3 \text{ Vpp},$       | Settling time to 0.1%  |     | 1.2   |     |                      |  |
| Settling Time                        | t <sub>S</sub>  | 0 : 4 0 00 5                 | Settling time to 0.01% |     | 5.6   |     | μs                   |  |
| NOISE CHARACTERISTICS                |                 |                              |                        |     |       |     |                      |  |
| Total Harmonic Distortion plus Noise | THD+N           | V <sub>IN</sub> = 2.5 Vpp, 1 | f = 1 kHz, Av = 1      |     | 0.009 |     | %                    |  |
| Land Deferred Velters Ne's           | e <sub>n</sub>  | f = 1                        | kHz                    |     | 30    |     | ->///                |  |
| Input Referred Voltage Noise         |                 | f = 1                        | 0 kHz                  |     | 20    |     | - nV/√ <del>Hz</del> |  |
| Input Referred Current Noise         | i <sub>n</sub>  | f = 1                        | kHz                    |     | 0.25  |     | fA/√ <del>Hz</del>   |  |
| SUPPLY CHARACTERISTICS               |                 |                              | <u>.</u>               |     |       |     |                      |  |
| D 0 1 D 1 11 D 11                    |                 |                              | 114                    | 135 |       |     |                      |  |
| Power Supply Rejection Ratio         | PSRR            | No                           | Load -                 | 100 |       |     | dB                   |  |
|                                      | I <sub>DD</sub> |                              |                        |     |       | 410 | 530                  |  |
| Power Supply Quiescent Current       |                 | Per chann                    | Per channel, no load   |     |       | 630 | μΑ                   |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 8. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 9. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

#### **ELECTRICAL CHARACTERISTICS AT V<sub>S</sub> = 10 V**

 $T_A = 25^{\circ}\text{C}$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range,  $T_A = -40^{\circ}\text{C}$  to 125°C. (Notes 10, 11)

| Parameter                      | Symbol                   | Conditions                     | Min | Тур | Max  | Unit  |
|--------------------------------|--------------------------|--------------------------------|-----|-----|------|-------|
| INPUT CHARACTERISTICS          |                          |                                | •   |     |      | •     |
| Leaved Office ( Valley as      | V                        |                                |     | 1.3 | ±3   | mV    |
| Input Offset Voltage           | Vos                      |                                |     |     | ±4   | mV    |
| Offset Voltage Drift           | $\Delta V_{OS}/\Delta T$ | T <sub>A</sub> = 25°C to 125°C |     | 2   |      | μV/°C |
| Input Bias Current             | I <sub>IB</sub>          | Note 11                        |     | 5   | 200  | pА    |
|                                |                          |                                |     |     | 1500 | рA    |
| Innut Office Courses           |                          | Note 11                        |     | 2   | 75   | pА    |
| Input Offset Current           | los                      |                                |     |     | 175  | рA    |
| Channel Separation             | XTLK                     | DC                             |     | 115 |      | dB    |
| Differential Input Resistance  | R <sub>ID</sub>          |                                |     | 50  |      | GΩ    |
| Common Mode Input Resistance   | R <sub>IN</sub>          |                                |     | 5   |      | GΩ    |
| Differential Input Capacitance | C <sub>ID</sub>          |                                |     | 1.5 |      | pF    |
| Common Mode Input Capacitance  | C <sub>CM</sub>          |                                |     | 3.5 |      | pF    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

<sup>10.</sup> Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

<sup>11.</sup> Performance guaranteed over the indicated operating temperature range by design and/or characterization.

**ELECTRICAL CHARACTERISTICS AT V**<sub>S</sub> = 10 V  $T_A = 25$ °C;  $R_L \ge 10$  kΩ;  $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range,  $T_A = -40$ °C to 125°C. (Notes 10, 11)

| Parameter                            | Symbol           | Cond                                     | litions                                 | Min | Тур   | Max  | Unit                 |
|--------------------------------------|------------------|------------------------------------------|-----------------------------------------|-----|-------|------|----------------------|
| INPUT CHARACTERISTICS                |                  | -                                        |                                         |     |       |      |                      |
| 0 11 1 5 1 5 5 5                     | 01400            |                                          |                                         | 110 | 130   |      |                      |
| Common Mode Rejection Ratio          | CMRR             | $V_{CM} = 0 V to$                        | V <sub>DD</sub> – 1.35 V                | 87  |       |      | dB                   |
| OUTPUT CHARACTERISTICS               |                  |                                          |                                         |     |       |      |                      |
| Open Loop Voltage Gain               | ۸                |                                          |                                         | 98  | 120   |      | dB                   |
| Open Loop Voltage Gain               | A <sub>VOL</sub> |                                          |                                         | 88  |       |      | иБ                   |
| Output Current Canability            |                  | Op amp sin                               | king current                            |     | 50    |      | A                    |
| Output Current Capability            | I <sub>O</sub>   | Op amp sou                               | rcing current                           |     | 65    |      | mA                   |
| Output Voltage High                  | V                | Valtage output outing from positive rail |                                         |     | 0.023 | 0.08 | V                    |
| Output voitage nigh                  | V <sub>OH</sub>  | voltage output swi                       | Voltage output swing from positive rail |     |       | 0.10 | V                    |
| Output Voltage Low                   | V                | Voltage output swing from negative rail  |                                         |     | 0.022 | 0.3  | V                    |
| Output voltage Low                   | V <sub>OL</sub>  |                                          |                                         |     |       | 0.35 | V                    |
| AC CHARACTERISTICS                   |                  |                                          |                                         |     |       |      |                      |
| Unity Gain Bandwidth                 | UGBW             | C <sub>L</sub> = 25 pF                   |                                         |     | 3.2   |      | MHz                  |
| Slew Rate at Unity Gain              | SR               | C <sub>L</sub> =                         | 20 pF                                   |     | 2.2   |      | V/μs                 |
| Phase Margin                         | φm               | C <sub>L</sub> =                         | 25 pF                                   |     | 50    |      | ٥                    |
| Gain Margin                          | A <sub>m</sub>   | C <sub>L</sub> =                         | 25 pF                                   |     | 14    |      | dB                   |
| Outline Time                         |                  | V <sub>O</sub> = 8.5 Vpp,                | Settling time to 0.1%                   |     | 3.4   |      |                      |
| Settling Time                        | t <sub>S</sub>   | Gain = 1, $C_L = 20 \text{ pF}$          | Settling time to 0.01%                  |     | 6.8   |      | μS                   |
| NOISE CHARACTERISTICS                |                  |                                          |                                         |     |       |      |                      |
| Total Harmonic Distortion plus Noise | THD+N            | V <sub>IN</sub> = 7.5 Vpp, 1             | = 1 kHz, Av = 1                         |     | 0.004 |      | %                    |
| Innut Defermed Velters Noise         | _                | f = 1                                    | kHz                                     |     | 30    |      | *)/// <del>[]=</del> |
| Input Referred Voltage Noise         | e <sub>n</sub>   | f = 1                                    | 0 kHz                                   |     | 20    |      | nV/√ <del>Hz</del>   |
| Input Referred Current Noise         | i <sub>n</sub>   | f = 1 kHz                                |                                         |     | 0.25  |      | fA/√ <del>Hz</del>   |
| SUPPLY CHARACTERISTICS               |                  |                                          |                                         |     |       |      |                      |
| Dower Cumby Dejection Datio          | PSRR             | No Load                                  |                                         | 114 | 135   |      | dB                   |
| Power Supply Rejection Ratio         | FORK             |                                          |                                         | 100 |       |      | ub ub                |
| Power Supply Ouisseet Current        | I=-              | Per channel, no load                     |                                         |     | 416   | 540  | ^                    |
| Power Supply Quiescent Current       | I <sub>DD</sub>  |                                          |                                         |     |       | 640  | μΑ                   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

10. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

11. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

# **ELECTRICAL CHARACTERISTICS AT V<sub>S</sub> = 36 V**

 $T_A = 25^{\circ}\text{C}$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range,  $T_A = -40^{\circ}\text{C}$  to 125°C. (Notes 12, 13)

| Parameter                            | Symbol                   | Cond                                                    | itions                       | Min | Тур   | Max  | Unit                               |
|--------------------------------------|--------------------------|---------------------------------------------------------|------------------------------|-----|-------|------|------------------------------------|
| INPUT CHARACTERISTICS                |                          |                                                         |                              |     |       |      |                                    |
| least Offeet Veltere                 |                          |                                                         |                              |     | 1.3   | ±3   | mV                                 |
| Input Offset Voltage                 | Vos                      |                                                         |                              |     |       | ±4   | mV                                 |
| Offset Voltage Drift                 | $\Delta V_{OS}/\Delta T$ | T <sub>A</sub> = 25°C                                   | to 125°C                     |     | 2     |      | μV/°C                              |
| January Dies Comment                 |                          | Not                                                     | - 40                         |     | 5     | 200  | рА                                 |
| Input Bias Current                   | I <sub>IB</sub>          | NOU                                                     | e 13                         |     |       | 1500 | рA                                 |
| January Officer Course at            |                          | Not                                                     | - 12                         |     | 2     | 75   | рА                                 |
| Input Offset Current                 | los                      | NOU                                                     | e 13                         |     |       | 175  | рA                                 |
| Channel Separation                   | XTLK                     | D                                                       | C                            |     | 115   |      | dB                                 |
| Differential Input Resistance        | R <sub>ID</sub>          |                                                         |                              |     | 50    |      | GΩ                                 |
| Common Mode Input Resistance         | R <sub>IN</sub>          |                                                         |                              |     | 5     |      | GΩ                                 |
| Differential Input Capacitance       | C <sub>ID</sub>          |                                                         |                              |     | 1.5   |      | pF                                 |
| Common Mode Input Capacitance        | C <sub>CM</sub>          |                                                         |                              |     | 3.5   |      | pF                                 |
| Common Made Deinstine Detin          | CMDD                     | V 0.V/45                                                | V 4.25.V                     | 120 | 145   |      | -ID                                |
| Common Mode Rejection Ratio          | CMRR                     | $V_{CM} = 0 V \text{ to } V_{DD} - 1.35 V$              |                              | 95  |       |      | <b>d</b> B                         |
| OUTPUT CHARACTERISTICS               |                          |                                                         |                              |     |       |      |                                    |
| Open Loop Voltage Gain               |                          |                                                         |                              | 98  | 120   |      | .ID                                |
| Open Loop Voltage Gain               | $A_{VOL}$                |                                                         |                              | 88  |       |      | dB                                 |
| Outrot Compatibility                 |                          | Op amp sin                                              | king current                 |     | 50    |      | A                                  |
| Output Current Capability            | lo                       | Op amp sou                                              | rcing current                |     | 65    |      | mA                                 |
| Outrot Valta and High                | \ /                      | Valta an autaut audi                                    | on financia manaisti ya mail |     | 0.074 | 0.10 | .,                                 |
| Output Voltage High                  | V <sub>OH</sub>          | voitage output swii                                     | ng from positive rail        |     |       | 0.12 | V                                  |
| Outrot Value and Leave               |                          | Valta na autout audi                                    | (                            |     | 0.065 | 0.3  | .,                                 |
| Output Voltage Low                   | $V_{OL}$                 | voitage output swir                                     | ng from negative rail        |     |       | 0.35 | V                                  |
| AC CHARACTERISTICS                   |                          |                                                         |                              |     |       |      |                                    |
| Unity Gain Bandwidth                 | UGBW                     | C <sub>L</sub> =                                        | 25 pF                        |     | 3.2   |      | MHz                                |
| Slew Rate at Unity Gain              | SR                       | C <sub>L</sub> =                                        | 20 pF                        |     | 2.4   |      | V/μs                               |
| Phase Margin                         | $\phi_{\text{m}}$        | C <sub>L</sub> =                                        | 25 pF                        |     | 50    |      | 0                                  |
| Gain Margin                          | A <sub>m</sub>           | C <sub>L</sub> =                                        | 25 pF                        |     | 14    |      | dB                                 |
| 0.411                                |                          | V <sub>O</sub> = 10 Vpp,                                | Settling time to 0.1%        |     | 3.2   |      |                                    |
| Settling Time                        | t <sub>S</sub>           | Gain = 1, C <sub>L</sub> = 20 pF Settling time to 0.01% |                              |     | 6.8   |      | μs                                 |
| NOISE CHARACTERISTICS                |                          |                                                         |                              |     |       |      |                                    |
| Total Harmonic Distortion plus Noise | THD+N                    | V <sub>IN</sub> = 28.5 Vpp, f = 1 kHz, Av = 1           |                              |     | 0.001 |      | %                                  |
| January Defended Malter at Nicker    | _                        | f = 1                                                   | kHz                          |     | 30    |      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| Input Referred Voltage Noise         | e <sub>n</sub>           | f = 10                                                  | ) kHz                        |     | 20    |      | nV/√ <del>Hz</del>                 |
| Input Referred Current Noise         | i <sub>n</sub>           | f = 1                                                   | kHz                          |     | 0.25  |      | fA/√ <del>Hz</del>                 |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

12. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

<sup>13.</sup> Performance guaranteed over the indicated operating temperature range by design and/or characterization.

**ELECTRICAL CHARACTERISTICS AT V**<sub>S</sub> = 36 V  $T_A = 25$ °C;  $R_L \ge 10$  kΩ;  $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range,  $T_A = -40$ °C to 125°C. (Notes 12, 13)

| Parameter                       | Symbol          | Conditions           | Min | Тур | Max | Unit |
|---------------------------------|-----------------|----------------------|-----|-----|-----|------|
| SUPPLY CHARACTERISTICS          |                 |                      |     |     |     |      |
| Davis Over la Daia etia a Datia | PSRR            | No Load              | 114 | 135 |     | 4D   |
| Power Supply Rejection Ratio    |                 |                      | 100 |     |     | dB   |
| Power Supply Quiescent Current  | I <sub>DD</sub> | December of the lead |     | 465 | 600 | ^    |
|                                 |                 | Per channel, no load |     |     | 700 | μΑ   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

12. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

<sup>13.</sup> Performance guaranteed over the indicated operating temperature range by design and/or characterization.

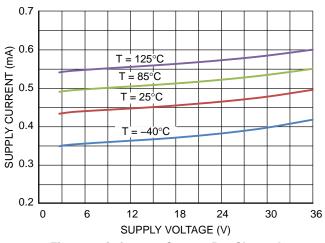



Figure 3. Quiescent Current Per Channel vs. Supply Voltage

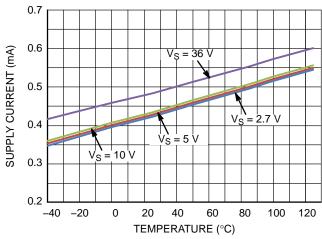



Figure 4. Quiescent Current vs. Temperature

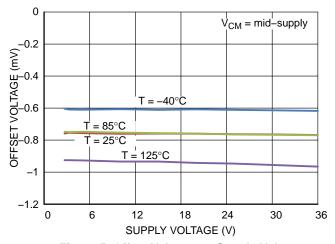



Figure 5. Offset Voltage vs. Supply Voltage

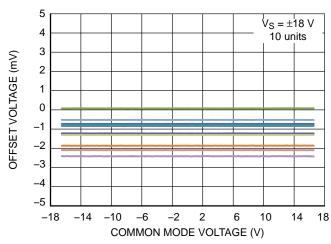



Figure 6. Input Offset Voltage vs. Common Mode Voltage



Figure 7. Input Offset Voltage vs. Common Mode Voltage

Figure 8. Gain and Phase vs. Frequency

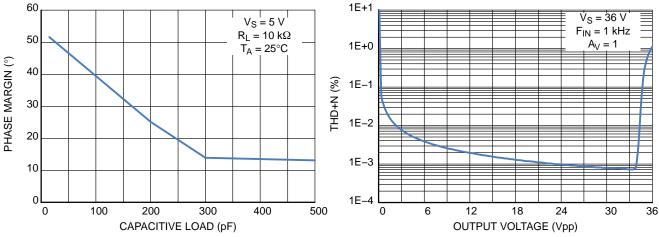



Figure 9. Phase Margin vs. Capacitive Load

Figure 10. THD+N vs. Output Voltage

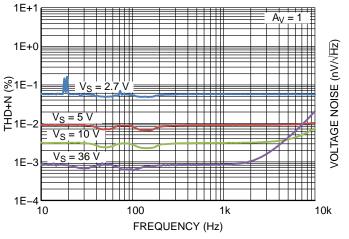



Figure 11. THD+N vs. Frequency

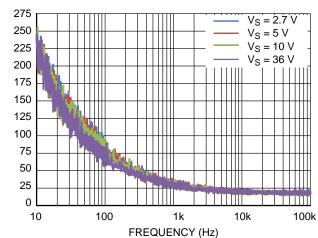



Figure 12. Input Voltage Noise vs. Frequency

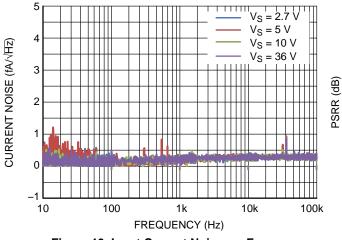



Figure 13. Input Current Noise vs. Frequency

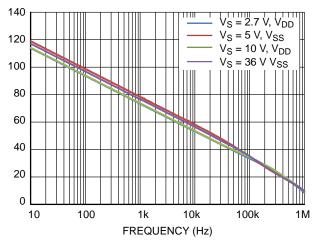
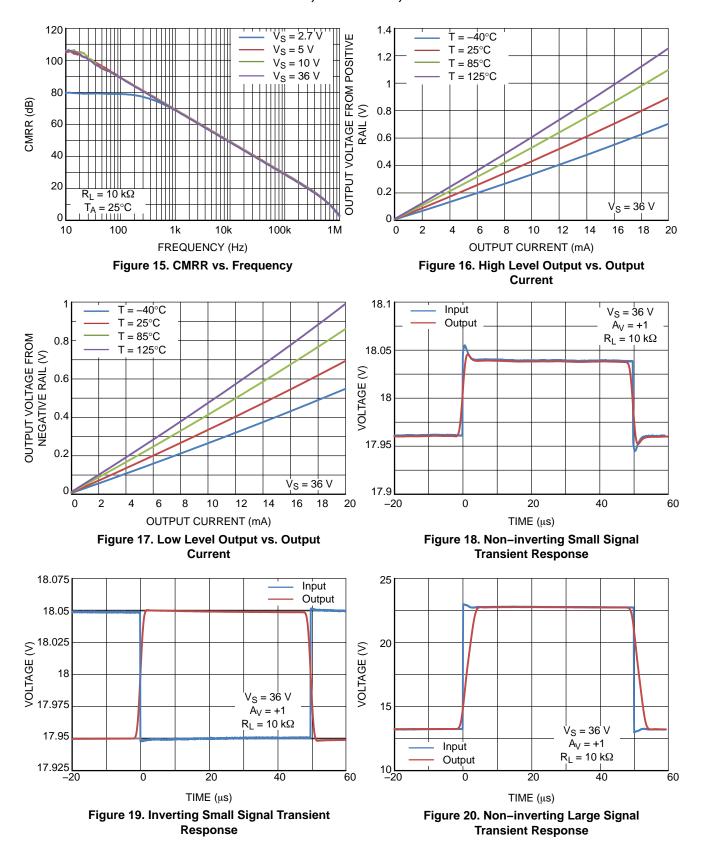




Figure 14. PSRR vs. Frequency



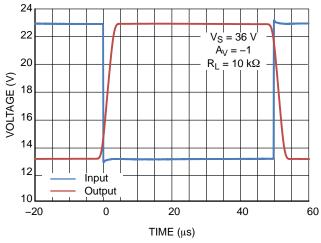



Figure 21. Inverting Large Signal Transient Response

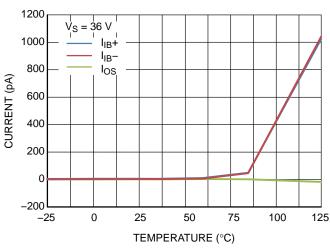



Figure 22. Input Bias and Offset Current vs.
Temperature

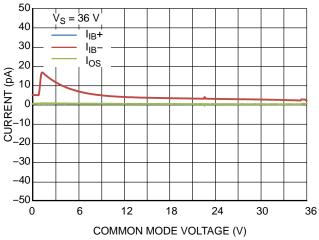



Figure 23. Input Bias Current vs. Common Mode Voltage

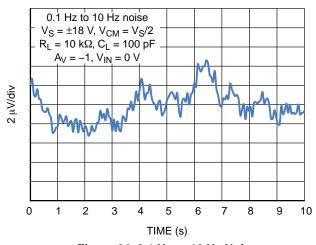



Figure 24. 0.1 Hz to 10 Hz Noise

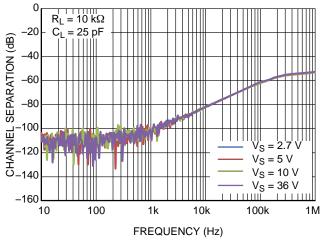



Figure 25. Channel Separation vs. Frequency

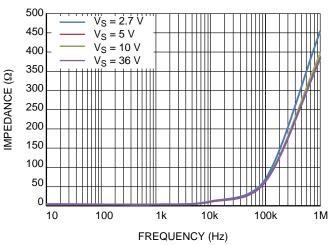



Figure 26. Open Loop Output Impedance

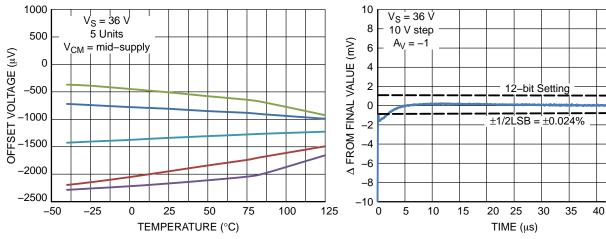



Figure 27. Offset Voltage vs. Temperature

Figure 28. Large Signal Settling Time

45

50

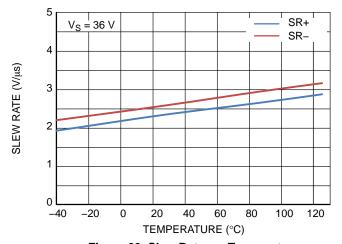
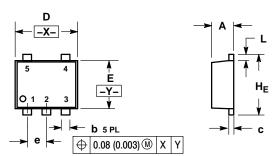
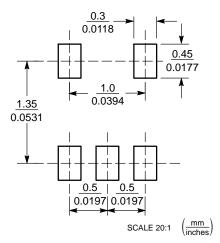




Figure 29. Slew Rate vs. Temperature

# **PACKAGE DIMENSIONS**

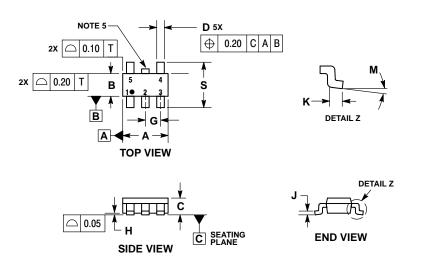
# **SOT-553, 5 LEAD**


CASE 463B ISSUE C



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETERS
  3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
  THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
  THICKNESS OF BASE MATERIAL.

|     | MILLIMETERS |          |      | INCHES |           |       |
|-----|-------------|----------|------|--------|-----------|-------|
| DIM | MIN         | NOM      | MAX  | MIN    | NOM       | MAX   |
| Α   | 0.50        | 0.55     | 0.60 | 0.020  | 0.022     | 0.024 |
| b   | 0.17        | 0.22     | 0.27 | 0.007  | 0.009     | 0.011 |
| С   | 0.08        | 0.13     | 0.18 | 0.003  | 0.005     | 0.007 |
| D   | 1.55        | 1.60     | 1.65 | 0.061  | 0.063     | 0.065 |
| E   | 1.15        | 1.20     | 1.25 | 0.045  | 0.047     | 0.049 |
| е   |             | 0.50 BSC |      |        | 0.020 BSC | )     |
| L   | 0.10        | 0.20     | 0.30 | 0.004  | 0.008     | 0.012 |
| HE  | 1.55        | 1.60     | 1.65 | 0.061  | 0.063     | 0.065 |

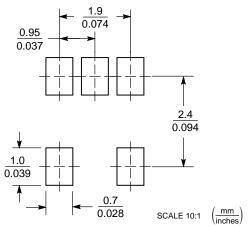

#### **RECOMMENDED SOLDERING FOOTPRINT\***



<sup>\*</sup>For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **PACKAGE DIMENSIONS**

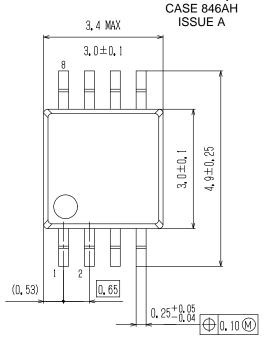
TSOP-5 CASE 483-02 ISSUE K

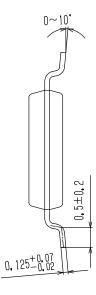


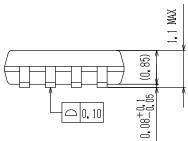

#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
  3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
  4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
  5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

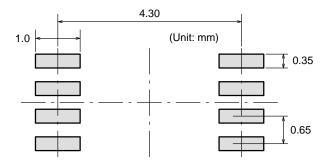
|     | MILLIMETERS |          |  |  |  |
|-----|-------------|----------|--|--|--|
| DIM | MIN         | MAX      |  |  |  |
| Α   | 3.00        | 3.00 BSC |  |  |  |
| В   | 1.50        | 1.50 BSC |  |  |  |
| С   | 0.90        | 1.10     |  |  |  |
| D   | 0.25        | 0.50     |  |  |  |
| G   | 0.95 BSC    |          |  |  |  |
| Н   | 0.01        | 0.10     |  |  |  |
| J   | 0.10        | 0.26     |  |  |  |
| K   | 0.20        | 0.60     |  |  |  |
| M   | 0 °         | 10 °     |  |  |  |
| S   | 2 50        | 3.00     |  |  |  |


#### **SOLDERING FOOTPRINT\***





\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

# **PACKAGE DIMENSIONS**

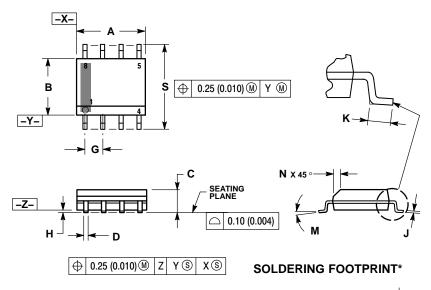

# Micro8 / MSOP8 (150 mil)







# **SOLDERING FOOTPRINT\***




NOTE: The measurements are not to guarantee but for reference only.

\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and

#### **PACKAGE DIMENSIONS**

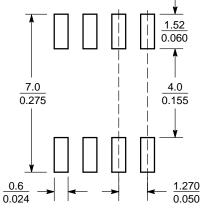
#### SOIC-8 NB CASE 751-07 **ISSUE AK**



#### NOTES:

- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

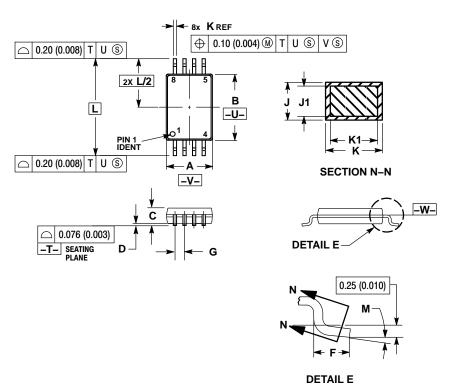

  2. CONTROLLING DIMENSION: MILLIMETER.

  3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

  4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED SIDE

- PER SIDE.
  5. DIMENSION D DOES NOT INCLUDE DAMBAR
  PROTRUSION. ALLOWABLE DAMBAR
  PROTRUSION SHALL BE 0.127 (0.005) TOTAL
  IN EXCESS OF THE D DIMENSION AT
  MAXIMUM MATERIAL CONDITION.
  6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
- STANDARD IS 751-07.

|     | MILLIMETERS |      | INCHES    |       |
|-----|-------------|------|-----------|-------|
| DIM | MIN         | MAX  | MIN       | MAX   |
| Α   | 4.80        | 5.00 | 0.189     | 0.197 |
| В   | 3.80        | 4.00 | 0.150     | 0.157 |
| С   | 1.35        | 1.75 | 0.053     | 0.069 |
| D   | 0.33        | 0.51 | 0.013     | 0.020 |
| G   | 1.27 BSC    |      | 0.050 BSC |       |
| Н   | 0.10        | 0.25 | 0.004     | 0.010 |
| J   | 0.19        | 0.25 | 0.007     | 0.010 |
| K   | 0.40        | 1.27 | 0.016     | 0.050 |
| М   | 0 °         | 8 °  | 0 °       | 8 °   |
| N   | 0.25        | 0.50 | 0.010     | 0.020 |
| S   | 5.80        | 6.20 | 0.228     | 0.244 |




<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SCALE 6:1

# **PACKAGE DIMENSIONS**

#### TSSOP-8 **CASE 948S ISSUE C**

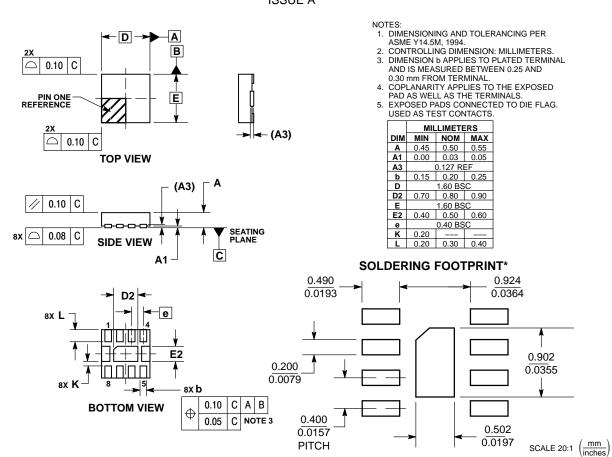


- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: MILLIMETER.

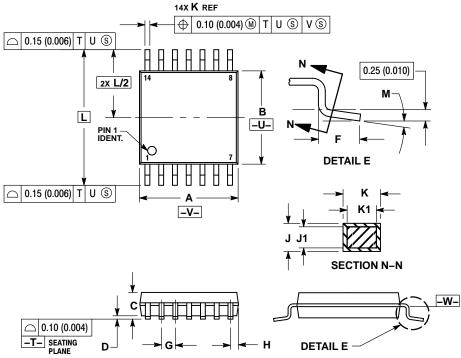
  3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PER SIDE.


  5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

  6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE W –.

|     | MILLIN   | IETERS | INCHES    |       |
|-----|----------|--------|-----------|-------|
| DIM | MIN MAX  |        | MIN       | MAX   |
| DIM |          |        |           |       |
| Α   | 2.90     | 3.10   | 0.114     | 0.122 |
| В   | 4.30     | 4.50   | 0.169     | 0.177 |
| C   |          | 1.10   |           | 0.043 |
| D   | 0.05     | 0.15   | 0.002     | 0.006 |
| F   | 0.50     | 0.70   | 0.020     | 0.028 |
| G   | 0.65 BSC |        | 0.026 BSC |       |
| J   | 0.09     | 0.20   | 0.004     | 0.008 |
| J1  | 0.09     | 0.16   | 0.004     | 0.006 |
| K   | 0.19     | 0.30   | 0.007     | 0.012 |
| K1  | 0.19     | 0.25   | 0.007     | 0.010 |
| L   | 6.40 BSC |        | 0.252 BSC |       |
| М   | 0°       | 8°     | 0°        | 8°    |

#### PACKAGE DIMENSIONS


# **UDFN8, 1.6x1.6, 0.4P**CASE 517AC ISSUE A

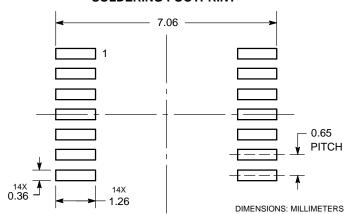


\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### PACKAGE DIMENSIONS

#### TSSOP-14 CASE 948G **ISSUE B**

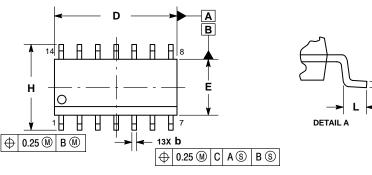


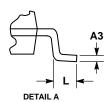

#### NOTES:

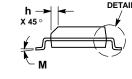
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.

- 2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
  4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
  5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.03) TOTAL IN EXCESS OF THE K DIMENSION AT
- IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
  DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIN   | IETERS | INCHES    |       |
|-----|----------|--------|-----------|-------|
| DIM | MIN      | MAX    | MIN       | MAX   |
| Α   | 4.90     | 5.10   | 0.193     | 0.200 |
| В   | 4.30     | 4.50   | 0.169     | 0.177 |
| С   |          | 1.20   |           | 0.047 |
| D   | 0.05     | 0.15   | 0.002     | 0.006 |
| F   | 0.50     | 0.75   | 0.020     | 0.030 |
| G   | 0.65 BSC |        | 0.026 BSC |       |
| Н   | 0.50     | 0.60   | 0.020     | 0.024 |
| J   | 0.09     | 0.20   | 0.004     | 0.008 |
| J1  | 0.09     | 0.16   | 0.004     | 0.006 |
| K   | 0.19     | 0.30   | 0.007     | 0.012 |
| K1  | 0.19     | 0.25   | 0.007     | 0.010 |
| ٦   | 6.40 BSC |        | 0.252 BSC |       |
| М   | 0 °      | 8 0    | n °       | 80    |


#### **SOLDERING FOOTPRINT\***



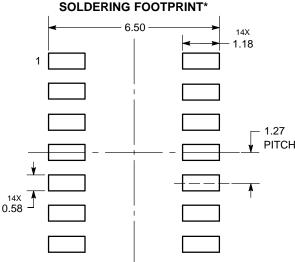


\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### PACKAGE DIMENSIONS

#### SOIC-14 NB CASE 751A-03 ISSUE K








#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
  3. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER

|     | MILLIN   | IETERS | INCHES    |       |
|-----|----------|--------|-----------|-------|
| DIM | MIN      | MAX    | MIN       | MAX   |
| Α   | 1.35     | 1.75   | 0.054     | 0.068 |
| A1  | 0.10     | 0.25   | 0.004     | 0.010 |
| A3  | 0.19     | 0.25   | 0.008     | 0.010 |
| b   | 0.35     | 0.49   | 0.014     | 0.019 |
| D   | 8.55     | 8.75   | 0.337     | 0.344 |
| Е   | 3.80     | 4.00   | 0.150     | 0.157 |
| е   | 1.27 BSC |        | 0.050 BSC |       |
| Н   | 5.80     | 6.20   | 0.228     | 0.244 |
| h   | 0.25     | 0.50   | 0.010     | 0.019 |
| L   | 0.40     | 1.25   | 0.016     | 0.049 |
| М   | 0 °      | 7°     | 0 °       | 7°    |

C SEATING



DIMENSIONS: MILLIMETERS

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and iii) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all Claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative