

LS846 N-CHANNEL JFET

Linear Systems Low Leakage Low Noise JFET

The LS846 is a high-performance JFET featuring extremely low noise and low leakage and is targeted for use in a wide range of precision instrumentation applications.

The 8 Pin P-DIP and 8 Pin SOIC provide ease of manufacturing, and the symmetrical pinout prevents improper orientation.

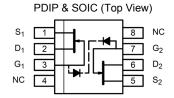
(See Packaging Information).

LS846 Applications:

- Wideband Differential Amps
- High-Speed,Temp-Compensated Single-Ended Input Amps
- High-Speed Comparators
- Impedance Converters and vibrations detectors.

FEATURES							
LOW LEAKAGE		I _G = 15pA TYP.					
LOW NOISE		$e_n = 3nV/VHz TYP.$					
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)							
Maximum Temperatures							
Storage Temperature			-65°C to +150°C				
Operating Junction Temperature			+135°C				
Maximum Voltage and Current- Note 1							
-V _{GSS}	Gate Voltage to Drain or So	Gate Voltage to Drain or Source					
-V _{GDS}	Gate Voltage to Drain or So	Gate Voltage to Drain or Source					
-V _{DSO}	Drain to Source Voltage	60V					
-I _{G(f)}	Gate Forward Current	50mA					
Maximum Power Dissipation							
Device Dissipation @ Free Air – Total 350mW @ +125°C							

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)


SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV_{GSS}	Breakdown Voltage	60	1		V	$V_{DS} = 0$ $I_D = 1nA$
	TRANSCONDUCTANCE					
Y_{fSS}	Full Conduction	1500			μmho	V_{DG} = 15V V_{GS} = 0V f = 1kHz
Y_{fS}	Typical Operation	1000	1500		μmho	$V_{DG} = 15V$ $I_{D} = 500 \mu A$
I _{DSS}	<u>DRAIN CURRENT</u> Full C <mark>o</mark> nduction	1.5	5	15	mA	$V_{DG} = 15V$ $V_{GS} = 0V$
V _{GS} (off) or V _p	GATE VOLTAGE Pinchoff voltage	1		3.5	V	V _{DS} = 15 V
V _{GS} (on)	Operating Range	0.5	-	3.5	V	V _{DS} ≠15 V I _D =500μA
	GATE CURRENT					
-l _G max.	Operating		15	50	pA	V _{DG} = 15V I _D = 500μA
-l _G max.	High Temperature			50	nA	T _A = +125°C
-I _G max.	Reduced V _{DG}		5	30	pA	$V_{DG} = 3V I_{D} = 500 \mu A$
-I _{GSS} max.	At Full Conduction			100	pA	V_{DG} = 15V , V_{DS} =0
Y _{OSS}	OUTPUT CONDUCTANCE Full Conduction		- 1	20	μmho	V _{DG} = 15V V _{GS} = 0V
Yos	Operating		0.2	2	μmho	$V_{DG} = 15V$ $I_{D} = 500 \mu A$
	<u>NOISE</u>					V_{DS} = 15V V_{GS} = 0V R_{G} = 10M Ω
NF	Figure			0.5	dB	f= 100Hz NBW= 6Hz
e_n	Noise Voltage		3	7	nV/√Hz	V_{DS} =15V I_D =500 μ A f=1KHz NBW=1Hz
C _{ISS}	<u>CAPACITANCE</u> Input			8		V _{DS} = 15V, I _D =500μA
C _{RSS}	Reverse Transfer			3	pF	V _{DG} = 15V, I _D =500μA

 $Note \ 1-These \ ratings \ are \ limiting \ values \ above \ which \ the \ service ability \ of \ any \ semiconductor \ may \ be \ impaired$

Available Packages:

LS846 / LS846 in PDIP & SOIC LS846 / LS846 available as bare die

Please contact Micross for full package and die dimensions

Tel: +44 1603 788967

Email: chipcomponents@micross.com
Web: http://www.micross.com/distribution