RICHTEK®

DDR Termination Regulator

General Description

The RTQ2536-QA is a sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count systems. The RTQ2536-QA possesses a high speed operating amplifier that provides fast load transient response and only requires a minimum 10μ F (effective value) ceramic output capacitor. The RTQ2536-QA supports remote sensing functions and all features required to power the DDRI / DDRII / DDRIII / DDRIII / DDRIV and DDRIV-L VTT bus termination according to the JEDEC specification.

The RTQ2536-QA is available in the thermal efficient package, WDFN-10SL 3x3.

Ordering Information

RTQ2536

Grade QA : AEC-Q100 Qualified and Screened by High Temperature — Package Type QW : WDFN-10SL 3x3 (W-Type)

——Lead Plating System G : Green (Halogen Free and Pb Free)

Note :

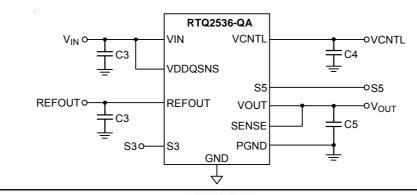
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Features

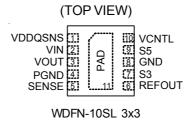
- AEC-Q100 Grade 1 Qualified
- VIN Input Voltage Range : 1V to 3.5V
- VCNTL Input Voltage Range : 2.9V to 5.5V
- Support Ceramic Capacitors
- 10mA Source/Sink Reference Output
- Meets DDRI, DDRII JEDEC Spec
- Supports DDRIII, DDRIII-L, DDRIV and DDRIV-L Applications
- Soft-Start Function
- UVLO and OCP Protection
- Thermal Shutdown

Applications

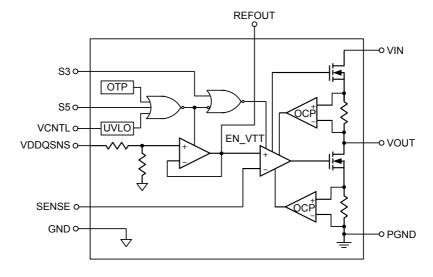

- Automotive and Industrial Supplies
- Notebook/Desktop/Server
- Telecom/Datacom, GSM Base Station, LCD-TV/PDP-TV, Copier/Printer, Set-Top Box

Marking Information

KG=YM DNN	
•	


KG= : Product Code YMDNN : Date Code

Simplified Application Circuit


Pin Configuration

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	VDDQSNS	Reference input.
2	VIN	Power input of the regulator.
3	VOUT	Power output of the regulator.
4	PGND	Power ground of the regulator.
5	SENSE	Voltage sense input for the regulator. Connect to positive terminal of the output capacitor or the load.
6	REFOUT	Reference output. Connect to GND through a 0.1μ F ceramic capacitor.
7	S3	S3 signal input.
9	S5	S5 signal input.
10	VCNTL	Control voltage input. Connect this pin to the 3.3V or 5V power supply. A ceramic decoupling capacitor with a value 4.7μ F is required.
8	GND	Analog ground. Connect to negative terminal of the output capacitor.
11 (Exposed Pad)	PAD	Exposed pad. The exposed pad is internally unconnected and must be soldered to a large PGND plane. Connect this PGND plane to other layers with thermal vias to help dissipate heat from the device.

Functional Block Diagram

Operation

The RTQ2536-QA is a linear sink/source DDR termination regulator with current capability up to 2A. The RTQ2536-QA builds in a high-side N-MOSFET which provides current sourcing and a low-side N-MOSFET which provides current sinking. All the control circuits are supplied by the power VCNTL. In normal operation, the error amplifier OP adjusts the gate driving voltage of the power MOSFET to achieve SENSE voltage well tracking the VDDQSNS/2 voltage.

Both the source and sink currents are detected by the internal sensing resistor, and the OCP function will work to limit the current to a designed value when overload happens. Furthermore, the current will be folded back to be one half if VOUT is out of the power good window.

Buffer

This function provides REFOUT output equal to VDDQSNS/2 with 10mA source/sink current capability.

Control Logic

This block includes VCNTL UVLO, VDDQSNS UVLO and Enable/Disable functions, and provides logic control to the whole chip.

Thermal Protection

Both the high-side and low-side power MOSFETs will be turned off when the junction temperature is higher than typically 160°C, and be released to normal operation when junction temperature falls below 135°C typically.

Power State Control

The input pins S3 and S5 of the RTQ2536-QA, provide simple control of the power state. Table 1 describes S3/ S5 terminal logic state and corresponding state of REFOUT/VOUT outputs. VOUT is turn-off and discharged to GND in state S3. When both S5 and S3 pins are LOW, the power state is set to S4/S5. In S4/S5 state, all the outputs are turn-off and discharged to GND.

STATE	S3	S5	REFOUT	VOUT
S0	HI	Н	ON	ON
S3	LO	HI	ON	OFF (Discharge)
S4/S5	LO	LO	OFF (Discharge)	OFF (Discharge)

Table 1. S3 and S5 Control Table

Absolute Maximum Ratings (Note 1)

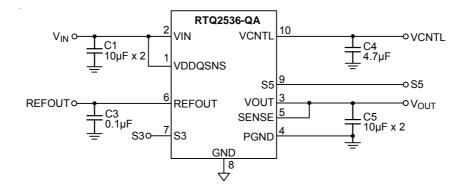
 Supply Voltage, VIN, VCNTL	0.3V to 6V
WDFN-10SL 3x3 • Package Thermal Resistance (Note 2)	4.09W
WDFN-10SL 3x3, θ _{JA}	7.5°C/W 260°C
 Junction Temperature Thermal Shutdown Temperature Thermal Shutdown Hysteresis 	160°C
 Storage Temperature Range ESD Susceptibility (Note 3) HBM (Human Body Model) 	

Recommended Operating Conditions (Note 4)

Control Input Voltage, VCNTL	2.9V to 5.5V
Supply Input Voltage, VIN	1V to 3.5V
Junction Temperature Range	$-40^{\circ}C$ to $125^{\circ}C$
Ambient Temperature Range	$-40^{\circ}C$ to $125^{\circ}C$

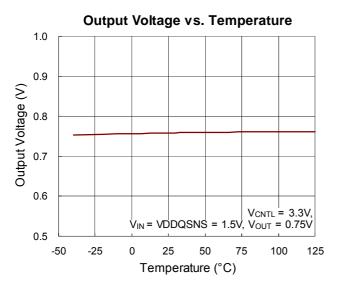
Electrical Characteristics

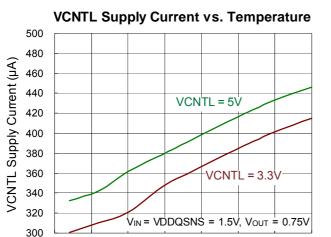
Parameter	Parameter Symbol Test Conditions		Min	Тур	Max	Unit	
Supply Current	•	•					
VCNTL Supply Current	IVCNTL	V_{S3} = VCNTL, V_{S5} = VCNTL, no load		0.5	0.75	mA	
VCNTL Shutdown	ISHDN_VCNTL	V_{S3} = 0V, V_{S5} = 0V, no load		65	80	μA	
Current		$V_{S3} = 0V, V_{S5} = VCNTL$, no load		200	350	μA	
VIN Supply Current	I _{VIN}	V_{S3} = VCNTL, V_{S5} = VCNTL, no load		1	35	μA	
VIN Shutdown Current	ISHDN_VIN	V _{S3} = 0V, V _{S5} = 0V, no load		0.1	10	μA	
Output	•	•					
		V_{IN} = 1.5V, $V_{VDDQSNS}$ = 1.5V, I_{OUT} = 0A		0.75			
		V_{IN} = 1.35V, $V_{VDDQSNS}$ = 1.35V, I_{OUT} = 0A		0.675		v	
VOUT Output Voltage	Vout	VIN = 1.2V, VVDDQSNS = 1.2V, IOUT = 0A		0.6			
		V_{IN} = 1.05V, $V_{VDDQSNS}$ = 1.05V, I_{OUT} = 0A (Note 5)		0.525			

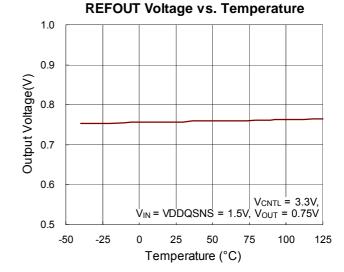


Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
			I _{OUT} = ±2A, V _{IN} = 1.5V, V _{REFOUT} = 0.75V	-30		30		
VOUT Output Voltage Offset		Vout oo	I _{OUT} = ±2A, V _{IN} = 1.35V, V _{REFOUT} = 0.675V	-30		30) mV	
	onage onser	V001_0S	I _{OUT} = ±2A, V _{IN} = 1.2V, V _{REFOUT} = 0.6V	-30		30		
			$I_{OUT} = \pm 2A, V_{IN} = 1.05V,$ $V_{REFOUT} = 0.525V$ (Note 5)	-30		30		
VOUT Source C	Current Limit	ILIM_VOUT_SR	VOUT in PGOOD window	2			А	
VOUT Sink Cur	rent Limit	ILIM_VOUT_SK	VOUT in PGOOD window	2			А	
VOUT Discharg Resistance	e	Rdischarge	$V_{VDDQSNS} = 0V, V_{OUT} = 0.3V, V_{S3} = 0V$		18	25	Ω	
VDDQSNS and	REFOUT							
VDDQSNS Inpu	it Current	IVDDQSNS	VVDDQSNS = 1.8V	20	30	40	μA	
VDDQSNS Volta	age Range	VVDDQSNS		0.5		1.8	V	
			–10mA < I _{REFOUT} < 10mA, V _{VDDQSNS} = 1.5V	-15		15		
REFOUT Voltag	e Tolerance		–10mA < I _{REFOUT} < 10mA, V _{VDDQSNS} = 1.35V	-13.5		13.5	mV	
to V _{VDDQSNS}		VTOL_REFOUT	–10mA < I _{REFOUT} < 10mA, V _{VDDQSNS} = 1.2V	-12		12		
			$-10mA < I_{REFOUT} < 10mA,$ V _{VDDQSNS} = 1.05V (Note 5)		10.5			
REFOUT Source Current Limit		ILIM_REFOUT_SR	V _{REFOUT} = 0V	10	40		mA	
REFOUT Sink Current Limit		ILIM_REFOUT_SK	V _{REFOUT} = VDDQSNS / 2 + 1V	10	40		mA	
UVLO/S3/S5		.	1			1		
UVLO Threshol	h	VUVLO_VCNTL	Rising	2.5	2.7	2.85	V	
	ч 1	VUVLO_VONTL	Hysteresis		120		mV	
S3/S5 Input	Logic-High	VIN_H		1.7			v	
Voltage	Logic-Low	V _{IN_L}				0.3		

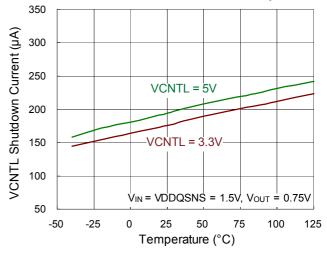
- Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Guarantee by design.




Typical Application Circuit

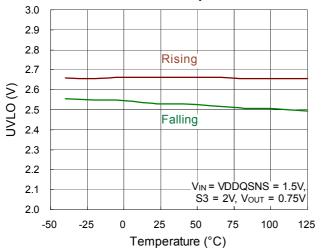


Typical Operating Characteristics

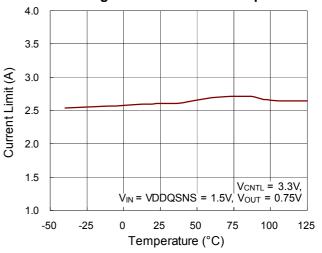


25

VCNTL Shutdown Current vs. Temperature


Temperature (°C)

50


75

100

125

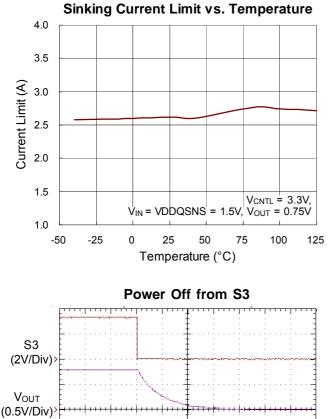
Sourcing Current Limit vs. Temperature

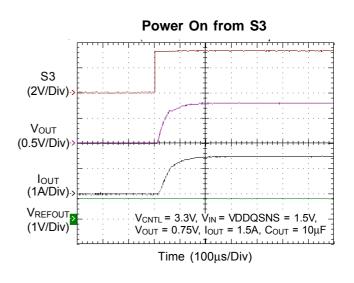
Copyright ©2018 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

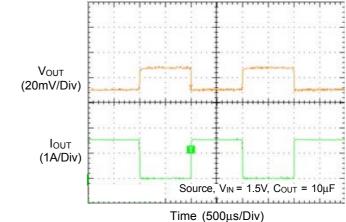
-50

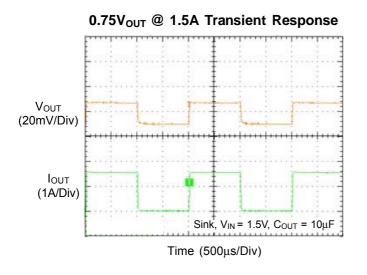
-25


0


RICHTEK

I_{OUT} (1A/Div)


VREFOUT


(1V/Div)

0.75V_{OUT} @ 1.5A Transient Response

 $\begin{array}{l} V_{CNTL}=3.3V, \stackrel{\downarrow}{V}_{IN}=VDDQSNS=1.5V,\\ V_{OUT}=0.75V, I_{OUT}=1.5A, C_{OUT}=10\mu F \end{array} \end{array}$

Time (10µs/Div)

Application Information

The RTQ2536-QA is a 2A sink/source tracking termination regulator. It is specifically designed for low-cost and lowexternal component count system such as notebook PC applications. The RTQ2536-QA possesses a high speed operating amplifier that provides fast load transient response and only requires two 10µF ceramic input capacitor and a 10µF ceramic output capacitors.

Capacitor Selection

Good bypassing is recommended from VIN to GND to help improve AC performance. A 10µF or greater input capacitor located as close as possible to the IC is recommended. The input capacitor must be located at a distance of less than 0.5 inches from the VIN pin of the IC.

For stable operation, the total capacitance of the ceramic capacitor at the VTT output terminal must be larger than $10\mu F$ (effective value). The RTQ2536-QA is designed specifically to work with low ESR ceramic output capacitor in space saving and performance consideration. Larger output capacitance can reduce the noise and improve load transient response, stability and PSRR. The output capacitor should be located near the VTT output terminal pin as close as possible.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WDFN-10SL 3x3 package, the thermal resistance, θ_{JA} , is 30.5°C/W on a standard JEDEC 51-7 high effective-thermalconductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (30.5^{\circ}C/W) = 4.09W$ for a WDFN-10SL 3x3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

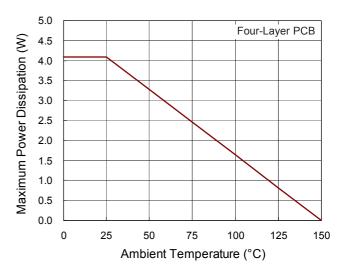


Figure 1. Derating Curve of Maximum Power Dissipation

Copyright ©2018 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com

RICHTEK

Outline Dimension

Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.175	0.250	0.007	0.010	
b	0.200	0.300	0.008	0.012	
D	2.900	3.100	0.114	0.122	
D2	2.550	2.650	0.100	0.104	
E	2.900	3.100	0.114	0.122	
E2	1.590	1.690	0.063	0.067	
е	0.5	0.500 0.020			
L	0.300	0.400	0.012	0.016	

W-Type 10SL DFN 3x3 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.