plerow[™] APM1765-P29

Low Noise & High OIP3 **Medium Power Amplifier Module**

Features

- · S₂₁ = 36.3 dB @ 1750 MHz
 - = 35.7 dB @ 1780 MHz
- NF of 1.8 dB over Frequency
- · Unconditionally Stable
- · Single 5V Supply
- · High OIP3 @ Low Current

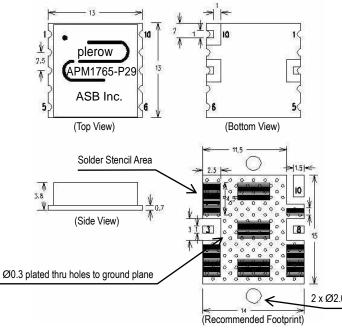
Description

The plerow[™] APM-Series is an internally matched amplifier mini-module for such application band in SMD package with the output P1dB of 29 dBm. It is compactly designed for low current consumption and high OIP3. Integrating all the components for biasing and matching within the module enhances production yield and throughput as well. It passes through the stringent DC, RF, and reliability tests. Not sample test but 100% quality control test is made before packing.

Specifications (in Production)

Typ. @ T = 25°C, V_s = 5 V, Freq. = 1765 MHz, $Z_{o.sys}$ = 50 ohm Specifications Parameter Unit Min Тур Max Frequency Range 1750 1780 MHz Gain dB 35 36 Gain Flatness dB ± 0.3 ± 0.4 Noise Figure dB 1.8 2.0 Output IP3⁽¹⁾ dBm 44 47 S11 / S22 (2) dB -18 / -10 Output P1dB dBm 28 29 Switching Time (3) μsec -Supply Current mΑ 460 500 Supply Voltage V 5 Impedance Ω 50 Max. RF Input Power dBm C.W 23 ~ 25 (before fail) Package Type & Size mm Surface Mount Type, 13Wx13Lx3.8H

More Information


Website: www.asb.co.kr E-mail: sales@asb.co.kr

Tel: (82) 42-528-7223 Fax: (82) 42-528-7222

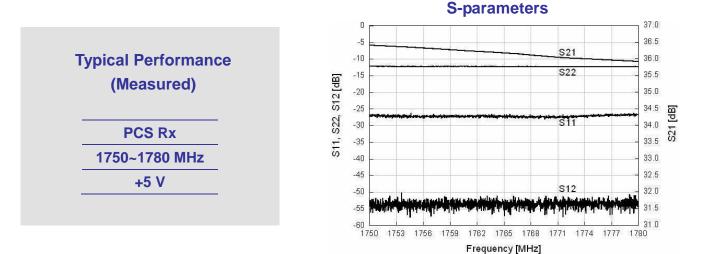
Operating temperature is -40°C to +85°C.

OIP3 is measured with two tones at an output power of 15 dBm / tone separated by 1 MHz.
S11/S22 (max) is the worst value within the frequency band.
Switching time means the time that takes for output power to get stabilized to its final level after switching DC voltage from 0 V to V_S.

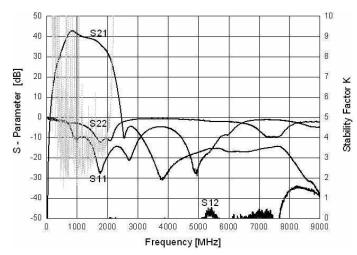
Outline Drawing (Unit: mm)

Pin Number	Function
3	RF In
8	RF Out
10	Vs
Others	Ground

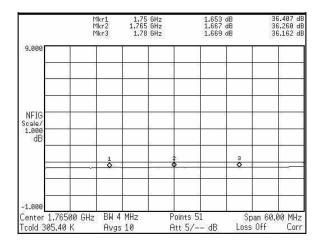
Note: 1. The number and size of ground via holes in a circuit board is critical for thermal RF grounding considerations.


2. We recommend that the ground via holes be placed on the bottom of all ground pins for better RF and thermal performance, as shown in the drawing at the left side.

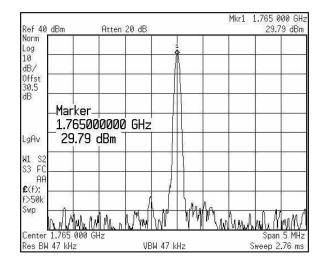
2 x Ø2.0 plated thru holes to screw on heat sinker



plerow[™] APM1765-P29


Low Noise & High OIP3 Medium Power Amplifier Module

Stability Factor (K)


Noise Figure

OIP3

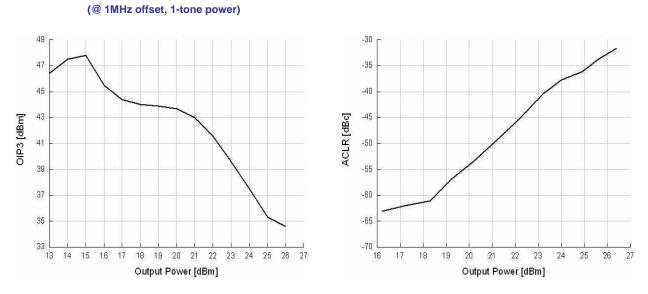
Ref 16.5 dBm #Atten 16 dB 14.978 #Samp 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J UDIII
10	
dB/	_
offst	
Center 1.765 000 GHz Span Res BW 47 kHz Sweep 8.0	

P1dB

plerow[™] APM1765-P29

Low Noise & High OIP3 Medium Power Amplifier Module

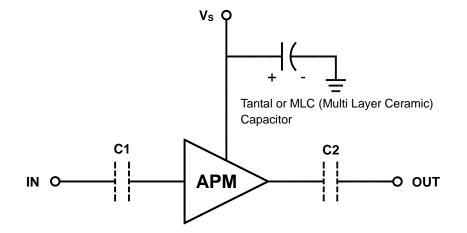
ef 13 <u>.31</u>	L dBm	#Atte	n 14 dB			∆ Mk	r1 –5 –45.0	.00 MH 016 dI
Avg		-		11				
B/ ffst 0.5 B		1	-			 -	Service -	-
48) 	.765 00 30 kHz	GHz	++	/BW 3 kF	z	Sh	Span leep 55	


OIP3 vs Output Power

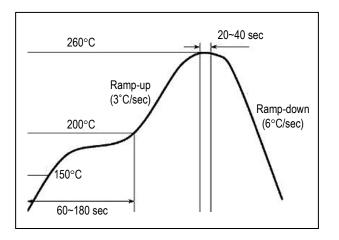
Output Channel Power

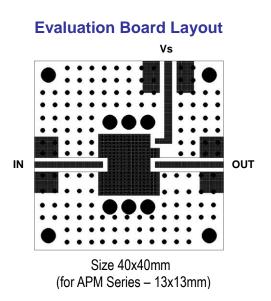
Ch Freq 1.765 GHz Trig Free Channel Power Center 1.765000000 GHz ▲ Mkr1 -5.00 MHz -45.078 dB Ref 4.475 dBm #Avg #Atten 6 dB 1R-Log 10 dB/ Offst 30.5 dB Span 50 MHz Center 1.765 00 GHz #Res BW 30 kHz #VBW 3 kHz Sweep 1.379 s **Channel Power** Power Spectral Density 18.59 dBm /20.0000 MHz -54.42 dBm/Hz

(@ ACLR=-45dBc, +/-5MHz Offset)



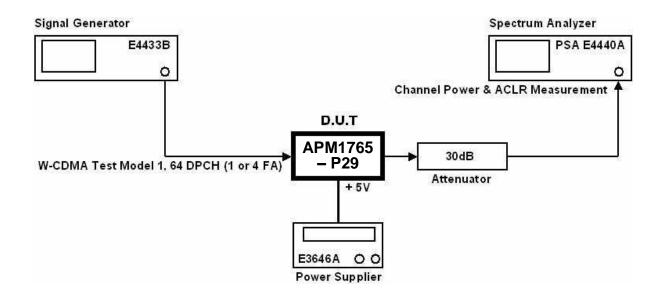
** Test Source : Agilent E4433B (3GPP W-CDMA Test Model-1 64DPCH)

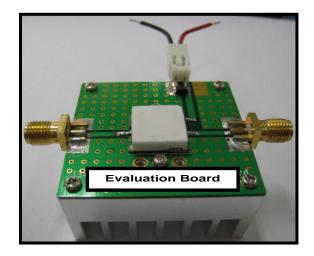

Low Noise & High OIP3 Medium Power Amplifier Module


Application Circuit

- The tantal or MLC (Multi Layer Ceramic) capacitor is optional and for bypassing the AC noise introduced from the DC supply. The capacitance value may be determined by customer's DC supply status. The capacitor should be placed as close as possible to V_s pin and be connected directly to the ground plane for the best electrical performance.
- 2) DC blocking capacitors are always necessarily placed at the input and output port for allowing only the RF signal to pass and blocking the DC component in the signal. The DC blocking capacitors are included inside the APM module. Therefore, C1 & C2 capacitors may not be necessary, but can be added just in case that the customer wants. The value of C1 & C2 is determined by considering the application frequency.

Recommended Soldering Reflow Process





Low Noise & High OIP3 Medium Power Amplifier Module

Channel Power vs. ACLR Test Configuration

Evaluation Board attached with Heat Sink

* In order to prevent damage of D.U.T (APM-Series) from heating, you must to use a properly sized heat sink for testing a module.