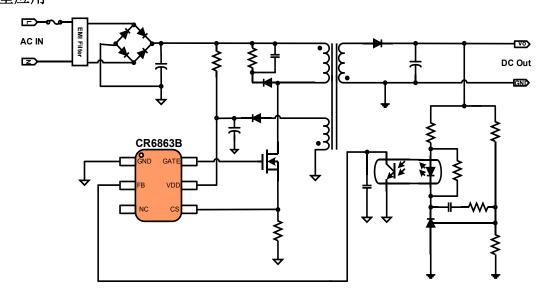


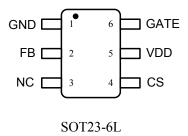
高能效CCM+PFM绿色节能PWM控制器

主要特点

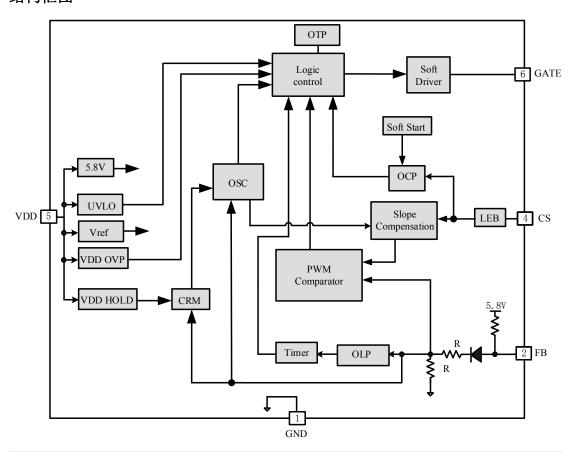

- 较低的启动电流 (大约3µA)
- 内置软启动减少MOSFET应力
- CCM+PFM控制模式
- 内建同步斜坡补偿,消除次谐波震荡
- 内建频率抖动功能,降低EMI
- 内置65kHz开关频率
- 轻载降低工作频率
- 基本应用
- AC/DC适配器
- 电视及监视器电源
- 产品概述

CR6863B 是一款高集成度、低待机功耗的 CCM+PFM 混合电流模式 PWM 控制器。CR6863B 轻载时会降低频率,最低频率 22kHz 可避免音频噪声。CR6863B 提供了完整的保护功能,如 cycle-by-cycle 电流限制、OCP、OTP、VDD_OVP、UVLO等。软启动功能可以减少系统启动时 MOSFET

- VDD电压8.5V—36.5V,工作范围更宽。
- VDD过压保护功能
- 内置前沿消隐电路
- 内置过温保护
- 过载保护
- SOT23-6L封装
- 充电器
- 存储设备电源


的应力,前沿消隐时间简化了系统应用。通过频率抖动和软驱动电路的设计,降低开关噪声,简化了 EMI 设计,CR6863B 还提供 VDD 电压从 8.5V—36.5V 更宽的工作范围。CR6863B 提供 SOT23-6L 的封装。

典型应用


管脚排列

管脚描述

引脚序号	符号	描述
1	GND	地脚。
2	FB	电压反馈脚,和 CS 共同决定输出占空比,同时此脚控制系统工作频率。
3	NC	悬空脚。
4	CS	电流检测脚,连接电阻在 MOSFET 的源和地之间检测电感电流。
5	VDD	电源脚。
6	GATE	驱动脚,外接功率 MOSFET 的栅极。

结构框图

极限参数

符号	描述	值	单位
$V_{ m VDD}$	电源电压	-0.3~38	V
$ m V_{FB}$	FB脚输入电	-0.3~7	V
V_{CS}	CS脚输入电	-0.3~7	V
$T_{ m L}$	焊接温度	260	$^{\circ}$
T_{J}	工作结温范围	-40 ~150	${\mathbb C}$
ESD	人体模式 HB	2k	V

推荐工作环境

符号	描述	最小~最大	单位
$ m V_{VDD}$	VDD电压	12~34	V
T_{OA}	工作温度	-20~85	$^{\circ}$

电气参数

(T_A=25°C 除非特别说明 VDD = 18V)

符号	参数描述	测试条件	最小	典型	最大	单位	
电源部分 (VDD Pin)							
I_{ST}	启动电流	UVLO_OFF-1V		3.0	10.0	μΑ	
I_{OP}	工作电流	$V_{CS}=0V$, $V_{FB}=3V$		2.5	3.5	mA	
I_{OP_CRM}	CRM 模式工作电流	$V_{CS}=0V$, $V_{FB}=0.5V$		0.6	0.7	mA	
$UVLO_{OFF}$	系统启动 VDD 电压		16.2	17.4	18.5	V	
$UVLO_{ON}$	系统关断 VDD 电压		8	8.5	9	V	
$\mathrm{VDD}_{\mathrm{OVP}}$	VDD 过压保护		35	36.5	38	V	
反馈部分(FB p	oin)						
A_{VCS}	PWM 输入增益 △FB/ △CS			3.5		V/V	
$ m I_{FB}$	FB 短路电流	V _{FB} =0V		220		μΑ	
$ m V_{FB}$	FB 开路电压	V _{FB} =Open		5.8		V	
$\mathrm{D}_{\mathrm{MAX}}$	最大占空比		77	80	83	%	
V _{REF_GREEN}	进入 PFM 时的 FB 电压			2.1		V	
V_{CRM_H}	退出 CRM 时的 FB 电压			1.3		V	
V_{CRM_L}	进入 CRM 时的 FB 电压			1.2		V	
V_{OLP}	过载保护时 FB 电压			4.4		V	
T_{OLP}	过载保护延迟时间			60		ms	
电流检测部分	(CS Pin)						
T_{SS}	软启动时间			2.5		ms	
T_{LEB}	前沿消隐时间			300		ns	
T_{D_OC}	过流检测延迟时间			90		ns	
V _{TH_OC}	零占空比时过流检测阈 值电压		0.43	0.45	0.47	V	
V _{TH_OC_CLAMP}	过流检测箝位电压			0.72		V	
内部热保护							
OTP	过热保护检测的温度			150		$^{\circ}\!\mathbb{C}$	
Hys.	过热保护检测迟滞			30		$^{\circ}\!\mathbb{C}$	
Gate pin							
$ m V_{OL}$	输出低电平	I _O =5mA			1	V	
V _{OH}	输出高电平	$I_O=20mA$	6			V	
V _{CLAMP}	输出箝位电压			11.5		V	
T_R		$C_L=1nF$		100		ns	
T_{F}		$C_L=1nF$		30		ns	
振荡器部分							

F _{OSC}	PWM 频率		60	65	70	kHz
F_{PFM}	PFM 最小频率			22		kHz
$\Delta F_{ m VDD}$	VDD 对 PWM 频率的影响			1		%
ΔF_{TEMP}	温度对 PWM 频率的影响	-30℃~100℃		1		%
ΔF_{JITTER}	频率抖动范围		-6		6	%
F_{JITTER}	频率抖动周期			32		Hz

芯片概述

CR6863B是一款高集成度、低待机功耗的电流模式PWM控制器。CR6863B轻载时会降低频率,最低频率22kHz可避免音频噪声,系统采用CCM+PFM混合控制模式以减小系统损耗,达到绿色节能的目的。IC集成了丰富的保护功能,简化了电路系统应用设计。

绿色节能

CR6863B 为多模式 PWM 控制器,在 重载时工作在 PWM 模式,频率为 65kHz, 通过调节脉冲宽度控制输出电压。FB 电压 随着负载减小而减小,当 FB 电压小于设 定电压值 V_{REF_GREEN} 时,内部模式控制器 进入 PFM,振荡器的工作频率随着负载的 降低而降低,并最终箝位在 22kHz 附近, 当 FB 电压继续减小时,内部模式控制器 进入 CRM 模式,进一步降低待机功耗。

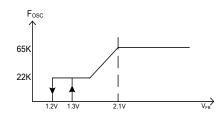


图 1 系统工作频率与 FB 电压示意图

内部同步斜坡补偿

电流模式控制比普通的电压模式控制 具有很多优点,但是同样存在着一些缺点。 特别是当 PWM 占空比大于 50 %,整个控 制环路可能变得不稳定,抗干扰性能变差。 CR6863B 内置一个同步的斜坡补偿可以 提高系统的稳定性,防止电压毛刺产生的 次谐波振荡。

软启动

VDD 电源启动瞬间,CR6863B 芯片内部都将触发软启动功能,即在 VDD 电压达到 UVLO_OFF 以后,在大约 2.5ms 时间内,峰值电流从 0 上升到最大值峰值电流,以减少电源启动期间功率管电压应力。

前沿消隐 (LEB)

开关管的每次开启不可避免带来开关 毛刺,它通过 R_{CS} 采样后,对内部逻辑电 路带来干扰,引起内部寄存器的误动作。 为了消除开关毛刺的影响,CR6863B 中设 计了 300ns 的前沿消隐电路,它可以代替 传统的外接 RC 滤波电路,简化外围设计。

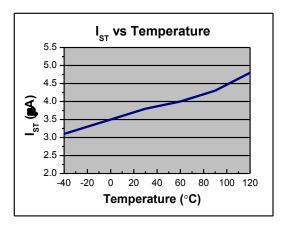
功率输出

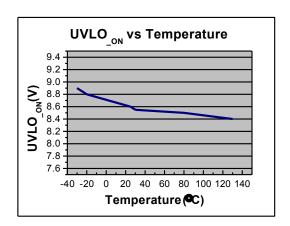
CR6863B 采用特殊的驱动输出,采用 软驱动模式,降低功率 MOSFET 开关噪 声,同时减小了功率 MOSFET 开关损耗。

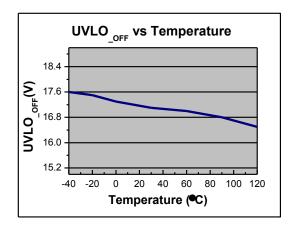
保护功能

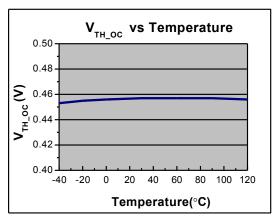
CR6863B 提供了丰富的保护功能, 比如 cycle-by-cycle 电流限制、UVLO、 OTP、VDD_OVP 等。当芯片检测到触发 保护并关断 GATE,系统处于锁定状态, 直到 VDD 将到 UVLO_ON 以下系统才能重 新启动。

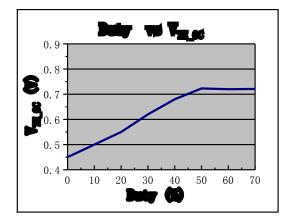
降低 EMI 技术

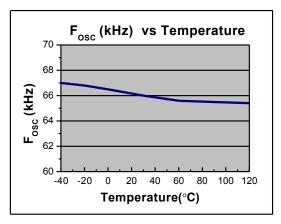

CR6863B 具有频率抖动功能,即开关 频率以 65kHz 为中心频率,在±6%的范围 内小幅变化,从而分散了谐波干扰能量。 扩展的频谱降低了窄带 EMI,简化了系统

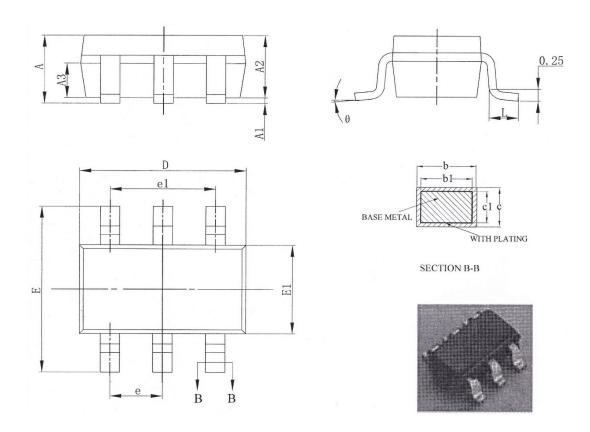



的设计。


特性曲线


(V_{DD}=18V, T_A=25℃ 除了另作说明)。





封装信息

SOT23-6L

mr 🗆	毫米				
符号	最小	典型	最大		
A	-	-	1.25		
A1	0.04	-	0.10		
A2	1.00	1.10	1.20		
A3	0.55	0.65	0.75		
b	0.38	-	0.48		
b1	0.37	0.40	0.43		
c	0.11	-	0.21		
c1	0.10	0.13	0.16		
D	2.72	2.92	3.12		
Е	2.60	2.80	3.00		
E1	1.40	1.60	1.80		
e	0.95BSC				
e1	1.90BSC				
L	0.30	-	0.60		
θ°	0	-	8°		

印章信息

订购信息

产品型号	封装类型	包装材质	一盘	一盒	一箱
CR6863B	SOT23-6L	编带	3000	30000	120000

SOT-23-6 封装产品最小订购量为 30000 片,即一盒的芯片数量。

重要声明

启臣保留对本规格书的修正权, 恕不另行通知!客户在下单前应获取产品的最新资料, 并验证其是否是完整以及最新版本。

任何半导体产品在特定条件下都有失效或发生故障的可能,买方使用本产品时,应对自己的设计及应用负责,遵守安全标准并采取安全措施,以保护人身及财产安全。