v 2.0 06.06.2014

VL415-3-20

- Violet Light Emitting Diode
- 415 nm, 10-16 mW
- Zener Diode, ESD Protective Circuit
- Viewing Angle: 20°
- Package: 3 mm Clear Epoxy

Description

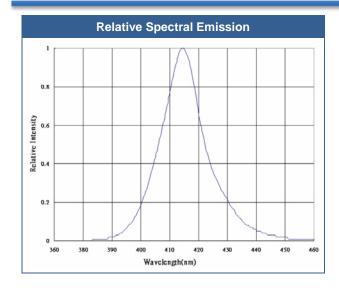
1

VL415-3-20 is a InGaN based Light Emitting Diode with a typical peak wavelength of 415 nm and radiation of 10-16 mW. It is mounted on a lead frame and encapsulated in a 3 mm clear UV-resistant epoxy resin, which provides a viewing angle of 20°.

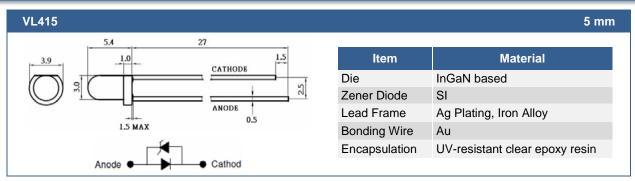
Maximum Ratings (TCASE=25°C)

Doromotor	Cumbal	Val	Heit		
Parameter	Symbol	Min.	Max.	Unit	
Power Dissipation	P_D		80	mW	
Forward Current	IF		20	mA	
Pulse Forward Current *1	I_{FP}		100	mA	
Allowable Reverse Voltage	I_R		50	mA	
Operating Temperature	T_{CASE}	- 40	+ 85	°C	
Storage Temperature	T_{STG}	- 40	+ 100	°C	
Lead Solder Temperature *2	T_{SLD}		+ 250	°C	

Electro-Optical Characteristics (TCASE=25°C)


Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength *1	λ_P	I _F =20mA	410	415	420	nm
Half Width	$\Delta \lambda$	I _F =20mA				nm
Forward Voltage *2	V_F	I _F =20mA	3.2		4.2	V
Radiated Power *3	P_0	I _F =20mA	10		16	mW
Reverse (Leakage) Current	I_R	$V_R=5V$			50	μΑ
Viewing Angle	φ	I _F =20mA		20		deg.

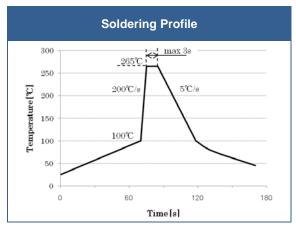
^{*1} measurement allowance is ±2 nm *2 measurement allowance is ±0.2 V *3 measurement allowance is ±10 %

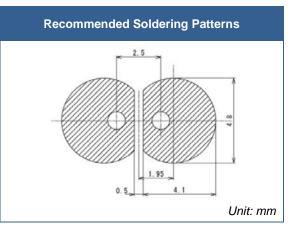

www.roithner-laser.com

 $^{^{*1}}$ duty \leq 1/10, pulse width \leq 10 ms *2 must be completed within 5 seconds

Typical Performance Curves

Outline Dimensions


All Dimensions in mm; Tolerance: ±0.15 mm


www.roithner-laser.com 2

Precautions

Soldering:

- · Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- · Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do only cut the leads at room temperature with an ESD protected tool
- Do not solder closer than 3 mm from base of the header
- Do form leads prior to soldering
- · Do not impose mechanical stress on the header when forming the leads
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended

DO NOT USE acetone, chloroseen, trichloroethylene, or MKS

DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

During operation these LEDs do emit **high intensity light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

The above specifications are for reference purpose only and subjected to change without prior notice

www.roithner-laser.com 3

[©] All Rights Reserved