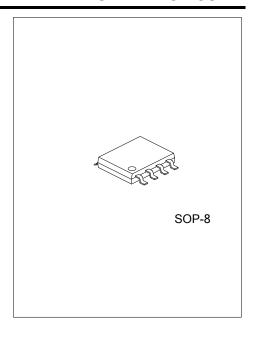
UNISONIC TECHNOLOGIES CO., LTD

USR1021

Preliminary

LINEAR INTEGRATED CIRCUIT

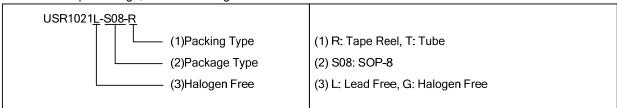
3A SYNCHRONOUS BUCK REGULATOR


DESCRIPTION

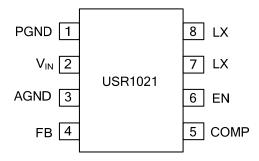
The UTC USR1021 is a high efficiency, 3A synchronous buck regulator. The UTC USR1021 works from a 6V to 18V input voltage range, and provides up to 3A of continuous output current with an output voltage adjustable down to 0.8V.

The UTC USR1021 comes in an SOP-8 packages and is rated over a -40°C~+85°C ambient temperature range.

FEATURES

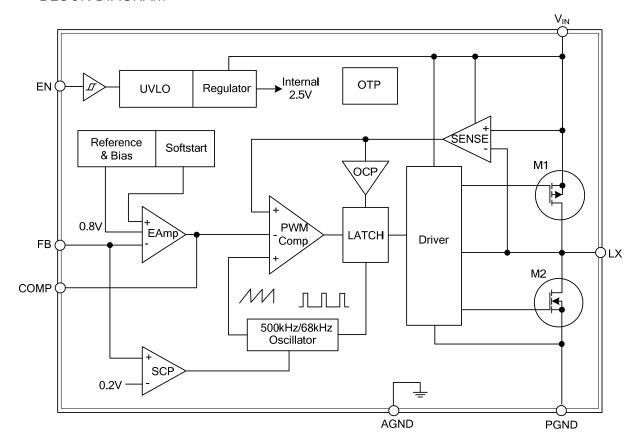

- * 6V~18V operating input voltage range
- * High efficiency
- * Internal soft start
- * 1.5% initial output accuracy
- * Output voltage adjustable to 0.8V
- * 3A continuous output current
- * Cycle-by-cycle current limit
- * 500kHz PWM operation
- * Thermal shutdown
- * Short-circuit protection

ORDERING INFORMATION


Ordering Number		Dealters	Dooking	
Lead Free	Halogen Free	Package	Packing	
USR1021L-S08-R	USR1021G-S08-R	SOP-8	Tape Reel	
USR1021L-S08-T	USR1021G-S08-T	SOP-8	Tube	

Note: xx: Output Voltage, refer to Marking Information.

www.unisonic.com.tw 1 of 4 QW-R103-073.a


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	PGND	Power ground
2	V_{IN}	Supply voltage input
3	AGND	Reference connectio for controller section
4	FB	Feedback voltage
5	COMP	Compensation pin
6	EN	Enable pin
7, 8	LX	Switch pin

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{IN}	18	V
LX to AGND		-0.7~V _{IN} +0.3	V
EN to AGND		-0.3~V _{IN} +0.3	V
FB to AGND		-0.3~6.0	V
COMP to AGND		-0.3~6.0	V
PGND to AGND		-0.3~+0.3	V
Junction Temperature	T _J	+150	°C
Storage Temperature	T _{STG}	-65~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

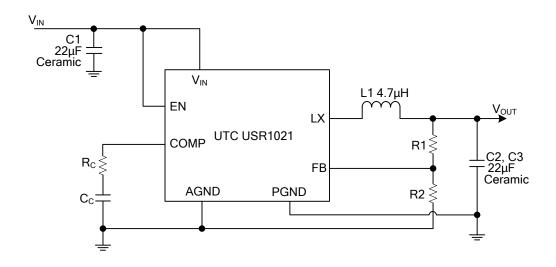
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note 2)	θ_{JA}	87	°C/W

■ RECOMMENDED OPERATING CONDIIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	6~18	V
Output Voltage Range		0.8~V _{IN}	V
Ambient Temperature	T _A	-40~+85	°C

ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{IN}=V_{EN}=12V, V_{OUT}=3.3V, unless otherwise specified)$ (Note 3)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Supply Voltage	V_{IN}		6		18	V		
Supply Current (Quiescent)	I _{IN}	I _{OUT} =0, V _{FB} =1.2V, V _{EN} >2V		3.5	5	mA		
Shutdown Supply Current	I _{OFF}	V _{EN} =0V		1	10	μΑ		
Feedback Voltage	V_{FB}	T _A =25 °C	0.788	8.0	0.812	V		
Load Regulation				0.5		%		
Line Regulation				1		%		
Feedback Voltage Input Current	I _{FB}				200	nA		
EN Innut Throphold	V _{EN}	Off Threshold			0.6	V		
EN Input Threshold		On Threshold	2			V		
SS Time		C _{SS} =16nF		2		ms		
MODULATOR	MODULATOR							
Frequency	f _O		400	500	600	kHz		
Maximum Duty Cycle	D _{MAX}		85			%		
Controllable Minimum On Time	T _{MIN}				150	ns		
Current Sense Transconductance				7		A/V		
Error Amplifier Transconductance				180		μA/V		
PROTECTION								
Current Limit	I _{LIMT}		3.5	4.5		Α		
Over Terror on the Object level 1 insit		T _J Rising		150		°C		
Over-Temperature Shutdown Limit		T _J Falling		100		°C		

Notes: 1. Devices are inherently ESD sensitive, handling precautions are required. Human body model rating: 1.5 $k\Omega$ in series with 100pF.

- 2. The value of θ_{JA} is measured with the device mounted on a 1-in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.
- 3. Specification in BOLD indicate an ambient temperature range of -40°C~+85°C. These specifications are guaranteed by design.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.