SN74LVC1G04 SCES214AD - APRIL 1999 - REVISED APRIL 2014 # **SN74LVC1G04 Single Inverter Gate** #### **Features** - Available in the Ultra-Small 0.64-mm² Package (DPW) with 0.5-mm Pitch - Supports 5-V V_{CC} Operation - Inputs Accept Voltages up to 5.5 V Allowing Down Translation to V_{CC} - Max t_{od} of 3.3 ns at 3.3-V - Low Power Consumption, 10-µA Max I_{CC} - ±24-mA Output Drive at 3.3-V - I_{off} Supports Live-Insertion, Partial-Power-Down Mode, and Back-Drive Protection - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) ### **Applications** - **AV Receiver** - Audio Dock: Portable - Blu-ray Player and Home Theater - Embedded PC - MP3 Player/Recorder (Portable Audio) - Personal Digital Assistant (PDA) - Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital - Solid State Drive (SSD): Client and Enterprise - TV: LCD/Digital and High-Definition (HDTV) - Tablet: Enterprise - Video Analytics: Server - Wireless Headset, Keyboard, and Mouse # Simplified Schematic #### 3 Description single inverter gate is designed 1.65-V to 5.5-V V_{CC} operation. The SN74LVC1G04 device performs the Boolean function Y = A. The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The SN74LVC1G04 device is available in a variety of packages, including the ultra-small DPW package with a body size of $0.8 \text{ mm} \times 0.8 \text{ mm}$. #### Device Information⁽¹⁾ | DEVICE NAME | PACKAGE | BODY SIZE | |-------------|------------|----------------| | | SOT-23 (5) | 2.9mm × 1.6mm | | | SC70 (5) | 2.0mm x 1.25mm | | SN74LVC1G04 | SON (6) | 1.45mm × 1.0mm | | | SON (6) | 1.0mm × 1.0mm | | | X2SON (4) | 0.8mm × 0.8mm | (1) For all available packages, see the orderable addendum at the end of the datasheet. Features 1 Applications 1 Parameter Measurement Information 8 #### **Table of Contents** | 3 | Description | . 1 | 9 | Detailed Description | 10 | |-----|--|---------|----|--------------------------------------|-----------------| | 4 | Simplified Schematic | . 1 | | 9.1 Overview | 10 | | 5 | Revision History | | | 9.2 Functional Block Diagram | 10 | | 6 | Pin Configuration and Functions | | | 9.3 Feature Description | 10 | | 7 | Specifications | | | 9.4 Device Functional Modes | 10 | | • | 7.1 Absolute Maximum Ratings | | 10 | Application and Implementation | <mark>11</mark> | | | 7.2 Handling Ratings | | | 10.1 Application Information | 11 | | | 7.3 Recommended Operating Conditions | | | 10.2 Typical Application | 11 | | | 7.4 Thermal Information | | 11 | Power Supply Recommendations | | | | 7.5 Electrical Characteristics | | | Layout | | | | 7.6 Switching Characteristics, C _L = 15 pF | | | 12.1 Layout Guidelines | | | | 7.7 Switching Characteristics, C _L = 30 pF or 50 pF, | . 0 | | 12.2 Layout Example | | | | -40°C to 85°C | . 6 | 13 | Device and Documentation Support | | | | 7.8 Switching Characteristics, C _L = 15 pF, –40°C to 125°C | | | 13.1 Trademarks | 13 | | | 7.9 Switching Characteristics, $C_L = 30 \text{ pF}$ or 50 pF, | . 0 | | 13.2 Electrostatic Discharge Caution | | | | -40°C to 125°C | . 7 | | 13.3 Glossary | 13 | | | 7.10 Operating Characteristics | | 14 | Mechanical, Packaging, and Orderable | 4.0 | | | | | | Information | 13 | | | nges from Revision AC (March 2014) to Revision Appleased Features, Description, and Device Information | | | | Page | | | | | | | | | | dded Pin Functions table. | | | | | | | dded Thermal Information table | | | | | | Α | dded Detailed Description section | | | | 10 | | Δ | dded Application and Implementation section | | | | 11 | | Δ | dded Power Supply Recommendations section | | | | 12 | | Δ | dded Layout section. | | | | 12 | | | nges from Revision AB (October 2013) to Revision | n AC | | | Page | | Δ | dded Applications | | | | 1 | | Α | dded Device Information table | | | | 1 | | Δ | dded DPW Package | | | | 3 | | Λ | loved T _{stq} to Handling Ratings table | | | | 4 | | | ong | | | | | | har | nges from Revision AA (September 2013) to Revis | sion AB | | | Page | | ι | | | | | | | | pdated Input Voltage Feature | | | | 1 | | C | Ipdated Input Voltage Feature | | | | | Submit Documentation Feedback Changes from Revision Z (November 2012) to Revision AA Copyright © 1999–2014, Texas Instruments Incorporated **Page** # 6 Pin Configuration and Functions #### **Pin Functions** | | | PIN | | | | | |-----------------|------------------|----------|--------|-----|-----|----------------| | NAME | DBV, DCK,
DRL | DSF, DRY | YZP | YZV | DPW | DESCRIPTION | | NC | 1 | 1, 5 | A1, B2 | - | 1 | No connect | | Α | 2 | 2 | B1 | A1 | 2 | Input | | GND | 3 | 3 | C1 | B1 | 3 | Ground | | Y | 4 | 4 | C2 | B2 | 4 | Output | | V _{cc} | 5 | 6 | A2 | A2 | 5 | Power terminal | Product Folder Links: SN74LVC1G04 #### 7 Specifications # 7.1 Absolute Maximum Ratings⁽¹⁾ over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | | |-----------------|--|---|------|------|------|--| | V_{CC} | Supply voltage range | | -0.5 | 6.5 | V | | | VI | Input voltage range | | -0.5 | 6.5 | V | | | Vo | Voltage range applied to any output in the | ge range applied to any output in the high-impedance or power-off state (2) | | | | | | Vo | Voltage range applied to any output in the | /oltage range applied to any output in the high or low state (2)(3) | | | | | | I _{IK} | Input clamp current | V _I < 0 | | -50 | mA | | | I _{OK} | Output clamp current | V _O < 0 | | -50 | mA | | | Io | Continuous output current | ontinuous output current | | | | | | | Continuous current through V_{CC} or GND | | | ±100 | mA | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 7.2 Handling Ratings | | PARAMETER | DEFINITION | MIN | MAX | UNIT | |--------------------|-------------------------|---|-----|-----|------| | T _{stg} | | Storage temperature range | -65 | 150 | °C | | \ <u>\</u> | Floatroatatia diasharaa | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾ | 0 | 2 | 141/ | | V _(ESD) | Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) | 0 | 1 | kV | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Documentation Feedback ²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. ⁽³⁾ The value of V_{CC} is provided in the *Recommended Operating Conditions* table. # 7.3 Recommended Operating Conditions⁽¹⁾ | | pply voltage gh-level input voltage | Operating Data retention only $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 1.65
1.5
0.65 × V _{CC} | 5.5 | V | |---------------------|-------------------------------------|--|---------------------------------------|------------------------|------| | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$
$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 0.65 × V _{CC} | | V | | V _{IH} Hig | gh-level input voltage | V_{CC} = 2.3 V to 2.7 V | | | | | V _{IH} Hig | gh-level input voltage | | 1 7 | | | | V _{IH} Hig | gn-level input voltage | | 1.7 | | ., | | | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$ | 2 | | V | | | | V _{CC} = 4.5 V to 5.5 V | 0.7 × V _{CC} | | | | | | V _{CC} = 1.65 V to 1.95 V | | 0.35 × V _{CC} | | | \/ | laval innut valtana | V _{CC} = 2.3 V to 2.7 V | | 0.7 | ., | | V _{IL} Lov | w-level input voltage | V _{CC} = 3 V to 3.6 V | | 0.8 | V | | | | V _{CC} = 4.5 V to 5.5 V | | 0.3 × V _{CC} | | | V _I Inp | out voltage | | 0 | 5.5 | V | | V _O Out | tput voltage | | 0 | V _{CC} | V | | | | V _{CC} = 1.65 V | | -4 | | | | | V _{CC} = 2.3 V | | -8 | | | I _{OH} Hig | gh-level output current | V 2.V | | -16 | mA | | | | $V_{CC} = 3 V$ | | -24 | | | | | V _{CC} = 4.5 V | | -32 | | | | | V _{CC} = 1.65 V | | 4 | | | | | V _{CC} = 2.3 V | | 8 | | | I _{OL} Lov | w-level output current | V 2.V | | 16 | mA | | | | V _{CC} = 3 V | | 24 | | | | | V _{CC} = 4.5 V | | 32 | | | | | $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$ | | 20 | | | Δt/Δv Inp | out transition rise or fall rate | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | | 10 | ns/V | | | | V _{CC} = 5 V ± 0.5 V | | 5 | | | T _A Ope | erating free-air temperature | | -40 | 125 | °C | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. #### 7.4 Thermal Information | <i>,</i> , , | normal imormation | | | | | | | | |--------------------|--|--------|--------|--------|--------|--------|--------|-------| | | | | | SN74L | VC1G04 | | | | | | THERMAL METRIC ⁽¹⁾ | DBV | DCK | DRL | DRY | YZP | DPW | UNIT | | | | 5 PINS | 5 PINS | 5 PINS | 6 PINS | 5 PINS | 4 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 229 |
278 | 243 | 439 | 130 | 340 | | | $R_{\theta JCtop}$ | Junction-to-case (top) thermal resistance | 164 | 93 | 78 | 277 | 54 | 215 | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 62 | 65 | 78 | 271 | 51 | 294 | 80044 | | ΨЈТ | Junction-to-top characterization parameter | 44 | 2 | 10 | 84 | 1 | 41 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 62 | 64 | 77 | 271 | 50 | 294 | | | $R_{\theta JCbot}$ | Junction-to-case (bottom) thermal resistance | - | - | - | - | - | 250 | | (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Product Folder Links: SN74LVC1G04 #### 7.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | V _{cc} | -40° | C to 85°C | | MENDED
to 125°C | UNIT | | |------------------------|---|-----------------|-----------------------|------------------------|-----------------------|--------------------|------|--| | | | | MIN | TYP ⁽¹⁾ MAX | MIN | TYP MAX | | | | | $I_{OH} = -100 \ \mu A$ | 1.65 V to 5.5 V | V _{CC} - 0.1 | | V _{CC} - 0.1 | | | | | | $I_{OH} = -4 \text{ mA}$ | 1.65 V | 1.2 | | 1.2 | | | | | V | $I_{OH} = -8 \text{ mA}$ | 2.3 V | 1.9 | | 1.9 | | ٧ | | | V_{OH} | $I_{OH} = -16 \text{ mA}$ | 3 V | 2.4 | | 2.4 | | V | | | | $I_{OH} = -24 \text{ mA}$ | 3 V | 2.3 | | 2.3 | | 1 | | | | $I_{OH} = -32 \text{ mA}$ | 4.5 V | 3.8 | | 3.8 | | | | | | I _{OL} = 100 μA | 1.65 V to 5.5 V | | 0.1 | | 0.1 | | | | | I _{OL} = 4 mA | 1.65 V | | 0.45 | | 0.45 | | | | M | I _{OL} = 8 mA | 2.3 V | | 0.3 | | 0.3 | ٧ | | | V _{OL} | I _{OL} = 16 mA | 3 V | | 0.4 | | 0.4 | V | | | | I _{OL} = 24 mA | 3 V | | 0.55 | | 0.55 | | | | | I _{OL} = 32 mA | 4.5 V | | 0.55 | | 0.55 | | | | I _I A input | V _I = 5.5 V or GND | 0 to 5.5 V | | ±5 | | ±5 | μA | | | I _{off} | V_I or $V_O = 5.5 \text{ V}$ | 0 | | ±10 | | ±10 | μΑ | | | Icc | $V_I = 5.5 \text{ V or GND}$ $I_O = 0$ | 1.65 V to 5.5 V | | 10 | | 10 | μA | | | ΔI _{CC} | One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND | 3 V to 5.5 V | | 500 | | 500 | μΑ | | | C_{i} | $V_I = V_{CC}$ or GND | 3.3 V | | 3.5 | | 3.50 | pF | | ⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C. #### 7.6 Switching Characteristics, $C_L = 15 pF$ over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3) | | | | | | | -40°C | to 85°C | | | | | |-----------------|-----------------|----------------|-------------------------------------|-----|------------------------------------|-------|------------------------------------|-----|----------------------------------|-----|------| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 1.8 V
± 0.15 V | | V _{CC} = 2.5 V
± 0.2 V | | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 5 V
± 0.5 V | | UNIT | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{pd} | Α | Υ | 2 | 6.4 | 1 | 4.2 | 0.7 | 3.3 | 0.7 | 3.1 | ns | ## 7.7 Switching Characteristics, $C_L = 30 \text{ pF}$ or 50 pF, -40°C to 85°C over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 4) | | | | | -40°C to 85°C | | | | | | | | | |-----------------|-----------------|----------------|-------------------------------|---------------|------------------------------|-----|------------------------------|-----|------------------------------|-----|------|--| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 1
± 0.15 | | V _{CC} = 2
± 0.2 | | V _{CC} = 3
± 0.3 | | V _{CC} = 5
± 0.5 | | UNIT | | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | | t _{pd} | Α | Y | 3 | 7.5 | 1.4 | 5.2 | 1 | 4.2 | 1 | 3.7 | ns | | # 7.8 Switching Characteristics, $C_L = 15 \text{ pF}$, -40°C to 125°C over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3) | | | | | | | -40°C 1 | o 125°C | | | | | |-----------------|-----------------|----------------|-------------------------------------|-----|------------------------------------|---------|------------------------------------|-----|----------------------------------|-----|------| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 1.8 V
± 0.15 V | | V _{CC} = 2.5 V
± 0.2 V | | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 5 V
± 0.5 V | | UNIT | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{pd} | A | Y | 2 | 6.4 | 1 | 4.2 | 0.7 | 3.3 | 0.7 | 3.1 | ns | Product Folder Links: SN74LVC1G04 # 7.9 Switching Characteristics, $C_L = 30 \text{ pF}$ or 50 pF, -40°C to 125°C over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 4) | | | | | -40°C to 125°C | | | | | | | | | |-----------------|-----------------|----------------|--------------------------------|----------------|------------------------------|-----|------------------------------|-----|-------------------------|-----|------|--| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 1.
± 0.15 | | V _{CC} = 2
± 0.2 | | V _{CC} = 3
± 0.3 | | V _{CC} = ± 0.5 | | UNIT | | | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | | t _{pd} | Α | Υ | 3 | 7.5 | 1.4 | 5.2 | 1 | 4.2 | 1 | 3.7 | ns | | #### 7.10 Operating Characteristics over operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | V _{CC} = 1.8 V | V _{CC} = 2.5 V | V _{CC} = 3.3 V | V _{CC} = 5.0 V | UNIT | | |----------|-------------------------------|-----------------|-------------------------|-------------------------|-------------------------|-------------------------|------|--| | | FARAINETER | TEST CONDITIONS | TYP | TYP | TYP | TYP | UNIT | | | C_{pd} | Power dissipation capacitance | f = 10 MHz | 16 | 18 | 18 | 20 | pF | | #### 7.11 Typical Characteristics #### 8 Parameter Measurement Information | TEST | S1 | |------------------------------------|-------------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V _{LOAD} | | t _{PHZ} /t _{PZH} | GND | | ., | INI | PUTS | ., | V | | - | v | |--------------------|-----------------|--------------------------------|--------------------|-------------------|-------|----------------|-----------------------| | V _{CC} | V_{I} | t _r /t _f | V _M | V _{LOAD} | CL | R _L | $oldsymbol{V}_\Delta$ | | 1.8 V \pm 0.15 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2×V _{CC} | 15 pF | 1 M Ω | 0.15 V | | 2.5 V \pm 0.2 V | V_{CC} | ≤2 ns | V _{CC} /2 | 2×V _{CC} | 15 pF | 1 M Ω | 0.15 V | | 3.3 V \pm 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 15 pF | 1 M Ω | 0.3 V | | 5 V \pm 0.5 V | v_{cc} | ≤2.5 ns | V _{CC} /2 | 2×V _{CC} | 15 pF | 1 Μ Ω | 0.3 V | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. All parameters and waveforms are not applicable to all devices. Figure 3. Load Circuit and Voltage Waveforms Submit Documentation Feedback Copyright © 1999–2014, Texas Instruments Incorporated #### **Parameter Measurement Information (continued)** | TEST | S1 | |------------------------------------|-------------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V _{LOAD} | | t _{PHZ} /t _{PZH} | GND | **LOAD CIRCUIT** | ., | INF | PUTS | ., | ., | | _ | ., | | |--------------------|-----------------|--------------------------------|--------------------|-------------------|-------|----------------|------------|--| | V _{CC} | V_{I} | t _r /t _f | V _M | V _{LOAD} | CL | R _L | V_Δ | | | 1.8 V \pm 0.15 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 1 k Ω | 0.15 V | | | 2.5 V \pm 0.2 V | V_{CC} | ≤ 2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 500 Ω | 0.15 V | | | 3.3 V \pm 0.3 V | 3 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | | 5 V \pm 0.5 V | v_{cc} | ≤2.5 ns | V _{CC} /2 | 2×V _{CC} | 50 pF | 500 Ω | 0.3 V | | - NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en}. - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. All parameters and waveforms are not applicable to all devices. Figure 4. Load Circuit and Voltage Waveforms Submit Documentation Feedback #### 9 Detailed Description #### 9.1 Overview The SN74LVC1G04 device contains inverter gate and performs the Boolean function $Y = \overline{A}$. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The DPW package technology is a major breakthrough in IC packaging.
Its tiny 0.64 mm square footprint saves significant board space over other package options while still retaining the traditional manufacturing friendly lead pitch of 0.5 mm. #### 9.2 Functional Block Diagram #### 9.3 Feature Description - Wide operating voltage range. - Operates from 1.65 V to 5.5 V. - · Allows down voltage translation. - Inputs accept voltages to 5.5 V. - I_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V. #### 9.4 Device Functional Modes #### **Function Table** | INPUT
A | OUTPUT
Y | |------------|-------------| | Н | L | | L | Н | Product Folder Links: SN74LVC1G04 #### 10 Application and Implementation #### 10.1 Application Information The SN74LVC1G04 is a high drive CMOS device that can be used for implementing inversion logic with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high speed applications up to 100 Mhz. The inputs are 5.5 V tolerant allowing it to translate down to $V_{\rm CC}$. #### 10.2 Typical Application #### 10.2.1 Design Requirements This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing. #### 10.2.2 Detailed Design Procedure - Recommended Input Conditions - Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions table. - Specified high and low levels: See (V_{IH} and V_{IL}) in the Recommended Operating Conditions table. - Inputs are overvoltage tolerant allowing them to go as high as (V_I max) in the Recommended Operating Conditions table at any valid V_{CC}. #### 2. Recommend Output Conditions - Load currents should not exceed (I_O max) per output and should not exceed total current (continuous current through V_{CC} or GND) for the part. These limits are located in the Absolute Maximum Ratings table. Product Folder Links: SN74LVC1G04 Outputs should not be pulled above V_{CC}. Submit Documentation Feedback # **Typical Application (continued)** #### 10.2.3 Application Curves Figure 5. I_{CC} vs Frequency #### 11 Power Supply Recommendations The power supply can be any voltage between the min and max supply voltage rating located in the Recommended Operating Conditions table. Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1-µF capacitor is recommended. if there are multiple VCC pins, then a 0.01-µF or 0.022-µF capacitor is recommended for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1-µF and 1-µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results. #### 12 Layout #### 12.1 Layout Guidelines When using multiple bit logic devices, inputs should never float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. The rules that must be observed under all circumstances are specified in the next paragraph. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or VCC; whichever makes more sense or is more convenient. #### 12.2 Layout Example Product Folder Links: SN74LVC1G04 Submit Documentation Feedback #### 13 Device and Documentation Support #### 13.1 Trademarks All trademarks are the property of their respective owners. #### 13.2 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. #### 13.3 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms and definitions. ## 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: SN74LVC1G04 17-May-2014 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |-------------------|---|--------------|--|--------------------------------|----------------|--------------------------------|------------------|--------------------|--------------|--|---------| | SN74LVC1G04DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C042 ~ C045 ~
C04F ~ C04K ~
C04R) | Samples | | SN74LVC1G04DBVRE4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C042 ~ C045 ~
C04F ~ C04K ~
C04R) | Samples | | SN74LVC1G04DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C042 ~ C045 ~
C04F ~ C04K ~
C04R) | Samples | | SN74LVC1G04DBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (C045 ~ C04F ~
C04K ~ C04R) | Samples | | SN74LVC1G04DBVTE4 | ACTIVE SOT-23 DBV 5 250 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 & no Sb/Br) | | -40 to 125 | (C045 ~ C04F ~
C04K ~ C04R) | Samples | | | | | | | | SN74LVC1G04DBVTG4 | ACTIVE | SOT-23 | SOT-23 DBV 5 250 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 & no Sb/Br) | | -40 to 125 | (C045 ~ C04F ~
C04K ~ C04R) | Samples | | | | | | SN74LVC1G04DCKR | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CC5 ~ CCF ~ CCK ~
CCR) | Samples | | SN74LVC1G04DCKRE4 | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CC5 ~ CCF ~ CCK ~
CCR) | Samples | | SN74LVC1G04DCKRG4 | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CC5 ~ CCF ~ CCK ~
CCR) | Samples | | SN74LVC1G04DCKT | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CC5 ~ CCF ~ CCK ~
CCR) | Samples | | SN74LVC1G04DCKTE4 | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CC5 ~ CCF ~ CCK ~
CCR) | Samples | | SN74LVC1G04DCKTG4 | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CC5 ~ CCF ~ CCK ~
CCR) | Samples | | SN74LVC1G04DPWR | ACTIVE | X2SON | DPW | 4 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | K4 | Samples | | SN74LVC1G04DRLR | IDRLR ACTIVE SOT DRL 5 4000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 & no Sb/Br) | | -40 to 125 | (CC7 ~ CCR) | Samples | | | | | | | | SN74LVC1G04DRLRG4 | ACTIVE | SOT | DRL | 5 | 4000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (CC7 ~ CCR) | Samples | | SN74LVC1G04DRY2 | ACTIVE | SON | DRY | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | СС | Samples | #### PACKAGE OPTION ADDENDUM 17-May-2014 | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish (6) | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |-------------------|--------|--------------|--------------------|------|----------------|----------------------------|----------------------|--------------------|--------------|----------------------|---------| | SN74LVC1G04DRYR | ACTIVE | SON | DRY | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | CC | Samples | | SN74LVC1G04DRYRG4 | ACTIVE | SON | DRY | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | CC | Samples | | SN74LVC1G04DSF2 | ACTIVE | SON | DSF | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | CC | Samples | | SN74LVC1G04DSFR | ACTIVE | SON | DSF | 6 | 5000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | CC | Samples | | SN74LVC1G04YZPR | ACTIVE | DSBGA | YZP | 5 | 3000 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | (CC2 ~ CC7 ~ CCN) | Samples | | SN74LVC1G04YZVR | ACTIVE | DSBGA | YZV | 4 | 3000 | Green (RoHS
& no Sb/Br) | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | CC
(2 ~ 7) | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan
- The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. #### PACKAGE OPTION ADDENDUM 17-May-2014 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN74LVC1G04: Automotive: SN74LVC1G04-Q1 Enhanced Product: SN74LVC1G04-EP #### NOTE: Qualified Version Definitions: - Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects - Enhanced Product Supports Defense, Aerospace and Medical Applications PACKAGE MATERIALS INFORMATION www.ti.com 28-May-2014 #### TAPE AND REEL INFORMATION # TAPE DIMENSIONS KO P1 BO W Cavity AO | | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE *All dimensions are nominal | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74LVC1G04DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.2 | 3.3 | 3.2 | 1.55 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.2 | 3.3 | 3.2 | 1.55 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.2 | 2.4 | 2.4 | 1.22 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DCKT | SC70 | DCK | 5 | 250 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DPWR | X2SON | DPW | 4 | 3000 | 180.0 | 8.4 | 0.91 | 0.91 | 0.5 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DRLR | SOT | DRL | 5 | 4000 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DRLR | SOT | DRL | 5 | 4000 | 180.0 | 9.5 | 1.78 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DRY2 | SON | DRY | 6 | 5000 | 180.0 | 9.5 | 1.6 | 1.15 | 0.75 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DRY2 | SON | DRY | 6 | 5000 | 180.0 | 8.4 | 1.65 | 1.2 | 0.7 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DRYR | SON | DRY | 6 | 5000 | 180.0 | 9.5 | 1.15 | 1.6 | 0.75 | 4.0 | 8.0 | Q1 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 28-May-2014 | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74LVC1G04DSF2 | SON | DSF | 6 | 5000 | 180.0 | 9.5 | 1.16 | 1.16 | 0.5 | 4.0 | 8.0 | Q3 | | SN74LVC1G04DSFR | SON | DSF | 6 | 5000 | 180.0 | 9.5 | 1.16 | 1.16 | 0.5 | 4.0 | 8.0 | Q2 | | SN74LVC1G04YZPR | DSBGA | YZP | 5 | 3000 | 178.0 | 9.2 | 1.02 | 1.52 | 0.63 | 4.0 | 8.0 | Q1 | | SN74LVC1G04YZVR | DSBGA | YZV | 4 | 3000 | 180.0 | 8.4 | 1.0 | 1.0 | 0.63 | 4.0 | 8.0 | Q1 | *All dimensions are nominal | All ullilensions are nominal | | | | | | | | |------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | SN74LVC1G04DBVR | SOT-23 | DBV | 5 | 3000 | 205.0 | 200.0 | 33.0 | | SN74LVC1G04DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G04DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G04DBVR | SOT-23 | DBV | 5 | 3000 | 202.0 | 201.0 | 28.0 | | SN74LVC1G04DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G04DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G04DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G04DCKR | SC70 | DCK | 5 | 3000 | 205.0 | 200.0 | 33.0 | | SN74LVC1G04DCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | SN74LVC1G04DCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G04DCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | SN74LVC1G04DCKT | SC70 | DCK | 5 | 250 | 205.0 | 200.0 | 33.0 | | SN74LVC1G04DPWR | X2SON | DPW | 4 | 3000 | 205.0 | 200.0 | 33.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 28-May-2014 | | | | | | 1 | | | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | SN74LVC1G04DRLR | SOT | DRL | 5 | 4000 | 202.0 | 201.0 | 28.0 | | SN74LVC1G04DRLR | SOT | DRL | 5 | 4000 | 184.0 | 184.0 | 19.0 | | SN74LVC1G04DRY2 | SON | DRY | 6 | 5000 | 184.0 | 184.0 | 19.0 | | SN74LVC1G04DRY2 | SON | DRY | 6 | 5000 | 202.0 | 201.0 | 28.0 | | SN74LVC1G04DRYR | SON | DRY | 6 | 5000 | 184.0 | 184.0 | 19.0 | | SN74LVC1G04DSF2 | SON | DSF | 6 | 5000 | 184.0 | 184.0 | 19.0 | | SN74LVC1G04DSFR | SON | DSF | 6 | 5000 | 184.0 | 184.0 | 19.0 | | SN74LVC1G04YZPR | DSBGA | YZP | 5 | 3000 | 220.0 | 220.0 | 35.0 | | SN74LVC1G04YZVR | DSBGA | YZV | 4 | 3000 | 210.0 | 185.0 | 35.0 | DBV (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. # DBV (R-PDSO-G5) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # DCK (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without
notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-203 variation AA. # DCK (R-PDSO-G5) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # DRL (R-PDSO-N5) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side. - D. JEDEC package registration is pending. # DRL (R-PDSO-N5) #### PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. SON (Small Outline No-Lead) package configuration. The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs. E. This package complies to JEDEC MO-287 variation UFAD. $frac{f}{K}$ See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape. # DRY (R-PUSON-N6) ## PLASTIC SMALL OUTLINE NO-LEAD NOTES: A. - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. C. SON (Small Outline No-Lead) package configuration. D. This package complies to JEDEC MO-287 variation X2AAF. DSF (S-PX2SON-N6) PLASTIC SMALL OUTLINE NO-LEAD NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask. - E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy. - H. Component placement force should be minimized to prevent excessive paste block deformation. NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - C. SON (Small Outline No-Lead) package configuration. - D. The package thermal pad must be soldered to the board for thermal and mechanical performance. - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. # DPW (S-PX2SON-N4) PLASTIC SMALL OUTLINE NO-LEAD #### THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. NOTES: All linear dimensions are in millimeters DPW (S-PX2SON-N4) #### PLASTIC SMALL OUTLINE NO-LEAD - NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. YZP (R-XBGA-N5) DIE-SIZE BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. NanoFree \mathbf{M} package configuration. NanoFree is a trademark of Texas Instruments. # YZV (S-XBGA-N4) ## DIE-SIZE BALL GRID ARRAY NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - C. NanoFree™ package configuration. NanoFree is a trademark of Texas Instruments. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID <u>www.ti-rfid.com</u> OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u> Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>