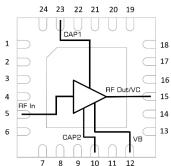


0.01-20 GHz Surface Mount Low Phase Noise Amplifier

1. Device Overview

1.1 General Description

The APM-7099SM is a broadband low phase noise driver amplifier designed to provide a saturated +25 dBm output power with low DC power consumption. This amplifier uses GaAs HBT technology for low phase noise, and is optimized to drive our NLTL multiplier line. It can also provide enough power to drive the LO port of an S-diode mixer from 10 MHz to 15 GHz, or of an H or L-diode mixer from 10 MHz to 20 GHz. This amplifier can be operated with a variety of bias conditions for both low and highpower applications. The APM-7099SM is packaged in a compact 4 mm QFN for surface mount integration on circuit board-based systems.


1.2 Features

- -167 dBc/Hz phase noise at 10 kHz offset frequency
- +25 dBm output power up to 20GHz
- Low DC power consumption
- Positive-only biasing
- No sequencing required
- Unconditionally stable
- .s2p S-Parameters: <u>EVAL-APM-</u> <u>7099SM.s2p</u>

1.3 Applications

- Mobile test and measurement equipment
- Radar and satellite communications
- 5G Transceivers
- Driver amplifier for S, H, and L diode mixers
- NLTL Driver
- Suitable as a T3 driver

1.4 Functional Block Diagram

1.5 Part Ordering Options¹

Part Number	Description	Package	Green Status	Product Lifecycle	Export Classification
APM-7099SM	4x4 mm Surface Mount	QFN	RoHS	Active	EAR99
EVAL-APM- 7099SM	Connectorized Evaluation Fixture	EVAL	RoHS	Active	EAR99

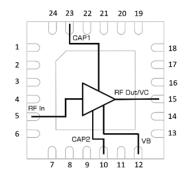
¹ Refer to our <u>website</u> for a list of definitions for terminology presented in this table.

Table of Contents

1.	D	evice Overview1
	1.1	General Description 1
	1.2	Features 1
	1.3	Applications 1
	1.4	Functional Block Diagram1
	1.5	Part Ordering Options1
2. Fi		PM-7099SM Port Configurations and ons3
	2.1	APM-7099SM Port Diagram3
	2.2	APM-7099SM Port Functions3
З.	S	pecifications4
	3.1	Absolute Maximum Ratings4
	3.2	Package Information4
	3.3	Recommended Operating Conditions . 5
	3.4	Sequencing Requirements5
	3.5	Electrical Specifications
		APM-7099SM Typical Performance s7

3.7 Typical Performance Plots of Marki MT3H-0113H Driven With APM-7099SM	
	9
3.8 Connectorized Module APM-7099PA	
Performance Plots1(כ
3.8.1 Phase Noise Plot10	כ
3.8.2 Time Domain Plots	כ
4. Application Information1	1
4.1 APM-7099SM Application Circuit 1	1
4.2 Bypass Capacitors1	1
4.3 Evaluation Board Header Pinout 1	1
4.4 Harmonic Generation	1
5. Mechanical Data 12	2
5.1 APM-7099SM Package Outline	
Drawing12	2
5.2 APM-7099SM Landing Pattern 12	2
5.3 EVAL-APM-7099SM Outline 13	3

Revision History


Revision Code	Revision Date	Comment
-	October 2020	Datasheet Initial Release
А	February 2021	Updated Thermal Specs, Absolute Max Table, and Min Specs

2. APM-7099SM Port Configurations and Functions

2.1 APM-7099SM Port Diagram

A port diagram of the APM-7099SM is shown below.

2.2 APM-7099SM Port Functions

Port	Function	Description	Equivalent Circuit for Package
5	RF Input	This is the RF input port of the device, and is RF matched to 50 $\Omega.$ This port is DC-coupled, and requires a blocking capacitor.	
12	Current Mirror Bias Port	Port 12 is the DC voltage bias pad for the current mirror that controls the collector current supplied to the amplifier. See section 3.6 for performance at different bias conditions.	
23	Off-Chip Cap Port 1	Port 23 allows the user to attach additional off chip bypass capacitance to provide adequate low frequency AC grounding termination to the input matching network. The value should be at least 100nF.	
10	Off-Chip Cap Port 2	Port 10 allows the user to attach additional off chip bypass capacitance to provide adequate low frequency AC grounding termination to the input matching network. The value should be at least 100nF.	
15	RF Output and Collector Supply Port	This is the amplifier's RF Output and positive VC supply voltage pin. It is RF matched to 50 Ω and is DC coupled. Must have less than 7:1 VSWR when operating.	RF Out
GND	Ground	IC backside must be connected to a DC/RF ground with high thermal and electrical conductivity.	GND⊥

3. Specifications

3.1 Absolute Maximum Ratings

The Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. If these limits are exceeded, the device may become inoperable or have a reduced lifetime.

Parameter	Maximum Rating	Units
Power Supply (Collector) Voltage (VC)	9	V
Power Supply (Collector) Current (Ic)	225	mA
Bias (Current Mirror) Voltage (VB)	9	V
RF Input Power (10 MHz – 3 GHz)	+12	dBm
RF Input Power (3 GHz – 20 GHz)	+15	dBm
Output Load VSWR	7:1	-
Operating Temperature	-40 to +85	°C
Storage Temperature	-65 to +150	°C
$ heta_{Jc}$, Junction to Ambient Thermal Resistance	56	°C/W
Max Junction Temperature for MTTF> 1E6 hours	125	°C
Max Power Dissipation for MTTF of 1E6 hours at 85°C Baseplate Temperature	709	mW

3.2 Package Information

Parameter	Details	Rating
ESD	Human Body Model (HBM), per MIL-STD-750, Method 1020	TBD
Weight	EVAL-APM-7099SM	43.6g

3.3 Recommended Operating Conditions

The Recommended Operating Conditions indicate the limits, inside which the device should be operated, to guarantee the performance given in Electrical Specifications Operating outside these limits may not necessarily cause damage to the device, but the performance may degrade outside the limits of the electrical specifications. For limits, above which damage may occur, see Absolute Maximum Ratings.

	Min	Nominal	Max ²	Units
T _A , Ambient Temperature	-40	+25	+85	°C
Positive DC Voltage (VC)	+5	+8	+9	V
Quiescent DC Current (Ic)	38	72	132	mA
DC Current with RF Input (Ic)	-	-	225	mA
Positive DC Current Mirror Voltage (VB)	+5	+7	+9	V
Input Power for Saturation	+10	+11	+12	dBm

3.4 Sequencing Requirements

There is no sequencing required to power up or power down the amplifier.

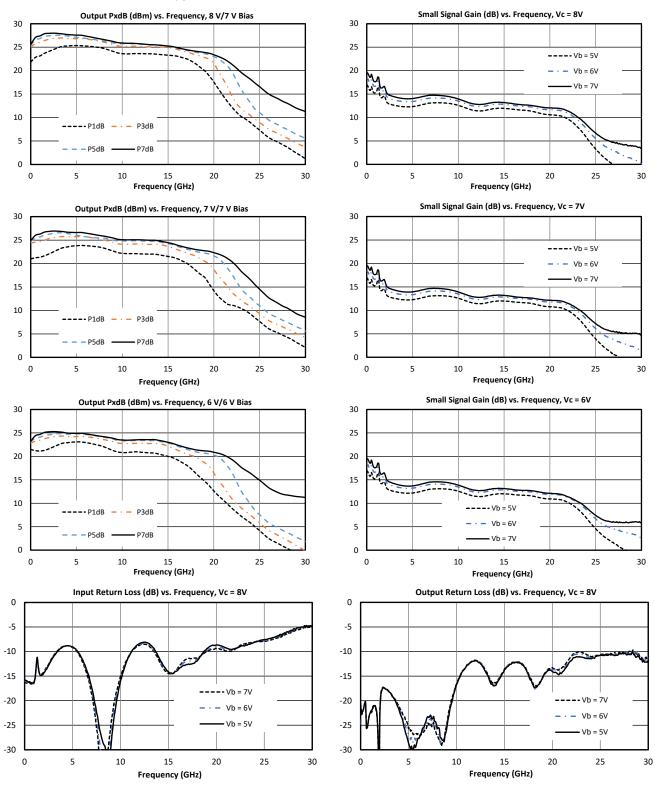
Amplifier must have an output load connected when operating.

² Maximum recommended operating current conditions without RF input applied. Please see typical performance plots on page 9 for relationship between RF input power and DC current draw.

3.5 Electrical Specifications

The electrical specifications apply at T_A=+25 °C in a 50 Ω system.

QFNs are 100% RF tested.

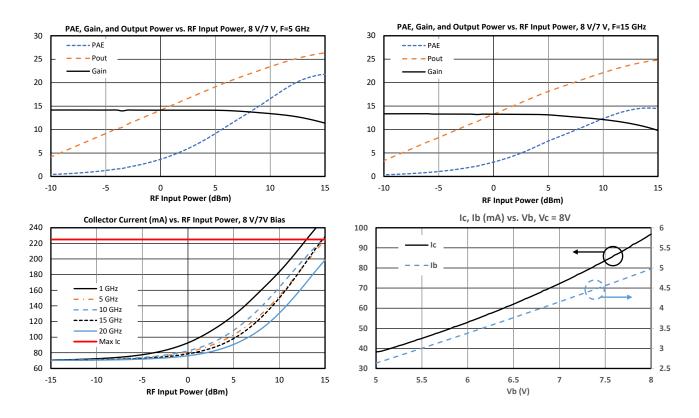

Parameter	Test Conditions	Frequency	Min	Typical	Units	
Output P _{7dB} ³	8 V/7 V bias	10 MHz – 15 GHz	+19	+25	dDm	
		15 GHz – 20 GHz		+23	dBm	
Small Signal Gain		10 MHz – 15 GHz	+10	+14		
		15 GHz – 20 GHz		+12		
Input Return Loss	0.1/7.1/	10 MHz – 20 GHz		8		
Output Return Loss	8 V/7 V bias,	10 MHz – 20 GHz		12		
Noise Figure	-20 dBm Input Power	10 MHz – 20 GHz		6	dB	
Reverse Isolation		10 MHz – 20 GHz		28		
Collector Current ⁴ , Ic	8 V/6 V	-		53		
	8 V/7 V	-		72	mA	
Current Mirror Current,	8 V/6 V	-		3.4		
lb	8 V/7 V	-		4.2		
Input IP3 (IIP3)	8 V/7 V bias,	10 MHz – 20 GHz		+13		
Output IP3 (OIP3)	-12 dBm Input Power	10 MHz – 20 GHz		+27	dBm	
Output P _{1dB}	8 V/7 V bias	10 MHz – 20 GHz		+21		
Input Power for Saturation	8 V/7 V bias	10 MHz – 20 GHz		+12	dBm	
Phase Noise @ 10 kHz Offset	+13 dBm Input power	1 GHz		-167	dBc/Hz	

 $^{^3}$ Saturated output power specification defined using the EVAL-APM-7099SM P_{7dB} compression curve shown in section 3.6

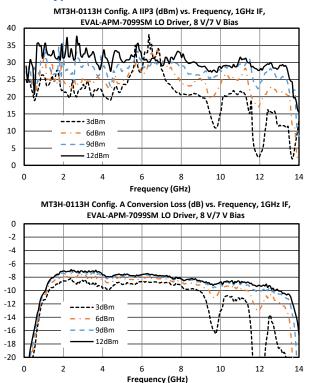
 $^{^4}$ Bias conditions for Ic and Ib tested with no RF input power. See section 3.6 for DC current vs. RF power. Bias conditions presented as VC/VB.

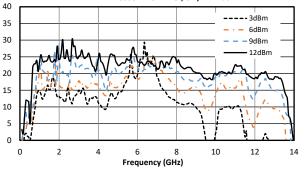


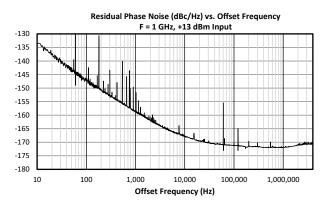
3.6 APM-7099SM Typical Performance Plots⁵

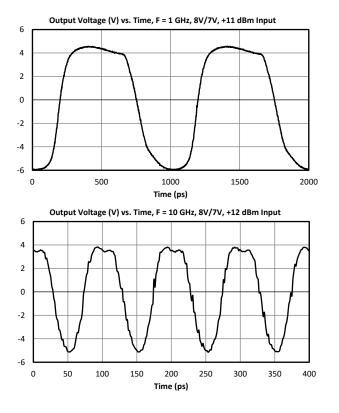


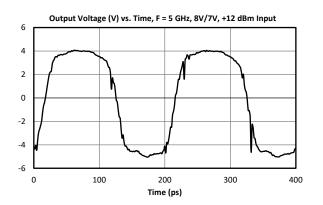
⁵ APM-7099SM measurements taken in EVAL-APM-7099SM evaluation board.






MT3H-0113H Config. A OIP3 (dBm) vs. Frequency, 1GHz IF, EVAL-APM-7099SM LO Driver, 8 V/7 V Bias



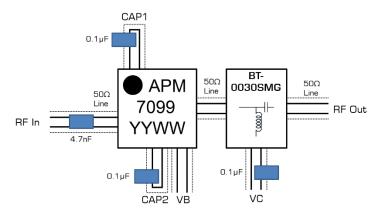

3.8 Connectorized Module APM-7099PA Performance Plots⁶

3.8.1 Phase Noise Plot

3.8.2 Time Domain Plots^{7 8}

⁶ Surface mount module APM-7099SM performance can be expected to be similar to connectorized module performance.

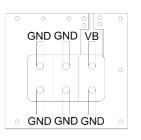
⁷ Fast rise time is desirable for linear T3 mixer operation.


⁸ Data taken using APM7099PA module

4. Application Information

4.1 APM-7099SM Application Circuit

Below is the recommended application circuit for the APM-7099SM.


RF input and output should be soldered to 50 Ω traces. A suggested capacitor for the bypass capacitors would be 0402 0.1 uF 16 V surface mount capacitors, such as the AVX 0402YD104KAT2A. For the input blocking capacitor, the suggested capacitor would be a 0402 4.7 nF 16V surface mount capacitor, such as the AVX 0402YD472KAT2A.

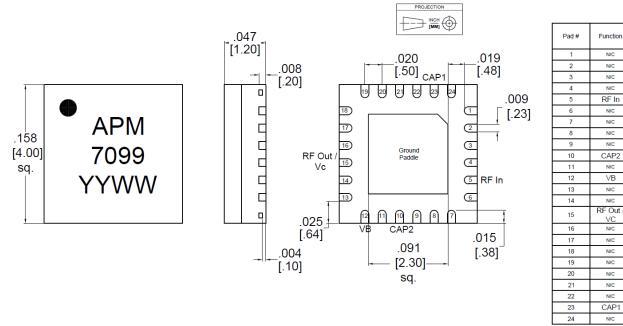
4.2 Bypass Capacitors

The bypass capacitors on ports CAP1 and CAP2 provide AC ground to the internal circuits on the chip. These should not be DC coupled to prevent disruption of the internal biasing circuits, or outright damage to the chip. The value of these be at least 100nF to provide adequate AC grounding. An additional 100 nF bypass capacitor should be added to the VC line to stabilize the amplifier and prevent power supply feedback to other parts on the board.

4.3 Evaluation Board Header Pinout

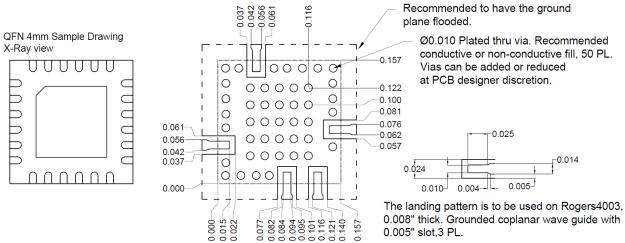
On the EVAL-APM-7099SM, there is a header for biasing the VB port. Only one pin is connected to VB, all other pins are soldered directly to the top side ground plane.

4.4 Harmonic Generation

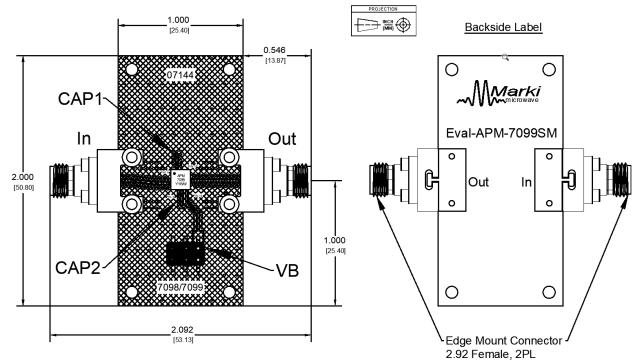

The APM-7099's harmonic generation can be controlled by adjusting the supply and bias voltages. Decreasing the base voltage VB will increase the even harmonic generation and odd harmonic suppression. To increase the odd harmonic generation and even harmonic suppression, decrease

the collector voltage VC. The optimal bias condition for even harmonic generation is VC = 8 V and VB = 5 V, while the optimal bias condition for odd harmonic generation is VC = 5 V and VB = 8 V.

5. Mechanical Data


5.1 APM-7099SM Package Outline Drawing

Notes:


- 1. Substrate Material is Plastic.
- 2. I/O Leads and Die Paddle are 0.05 microns Au over 0.02 microns Pd over 0.5 microns Ni.
- 3. All unconnected pins should be connected to PCB RF ground.

5.2 APM-7099SM Landing Pattern

5.3 EVAL-APM-7099SM Outline

