Dual Output Plug-in Signal Conditioners W-UNIT

FILTER/LAG TRANSMITTER

(field-programmable)
Functions \& Features

- Providing various filter functions which eliminate unnecessary elements in the input signals
- Microprocessor based
- On-site calibration via hand-held programmer PU-2x
- Field-programmable input range
- Isolation up to 2000 V AC
- High-density mounting

Typical Applications

- Level control; eliminating drifts in the input signal caused by pumps

MODEL: WJFT[1]-[2][3][4]-[5][6]

ORDERING INFORMATION

- Code number: WJFT[1]-[2][3][4]-[5][6]

Specify a code from below for each of [1] through [6]. (e.g. WJFT1-6A6-B/Q)

- Special input and output ranges (For codes U1, U2, U3, Z \& 0)
- Parameters (See "Functions" section)

Default setting will be used if not otherwise specified. Use Ordering Information Sheet (No. ESU-1679) to specify parameters.

- Specify the specification for option code /Q (e.g. /C01/S01)

Note: When the user requires a current and a voltage output, specify the current to be the Output 1 which allows a greater load.

ITEM	DEFAULT
Sampling cycle: H	0.1
No. of samples to be calculated: N	1 (2 for mean aver- age output filter)
Time constant: T	0.0
Max. rate of positive output change (CP)	200.00
Max. rate of negative output change (CN)	200.00
No. of smallest samples to be cut off (L)	0
No. of largest samples to be cut off (U)	0

[1] FUNCTION

1: Moving average output
2: Dead-time computing
3: Delay buffer
4: Lead-time computing
5: Ramp buffer
6: Mean average output

[2] INPUT

Current

A: 4-20 mA DC (Input resistance 250Ω)
H: 10-50 mA DC (Input resistance 100Ω)
Voltage
6: 1 - 5 V DC (Input resistance $1 \mathrm{M} \Omega \mathrm{min}$.)
U1: Range $\pm 100 \mathrm{mV}$;
(Minimum span 3 mV , Input resistance $20 \mathrm{k} \Omega$ min.)
U2: Range $\pm 1000 \mathrm{mV}$;
(Minimum span 30 mV , Input resistance $20 \mathrm{k} \Omega \mathrm{min}$.)
U3: Range $\pm 10 \mathrm{~V}$;
(Minimum span 0.3 V,Input resistance $1 \mathrm{M} \Omega$ min.)

[3] OUTPUT 1

Current

A: 4-20 mA DC (Load resistance 600Ω max.)
B: 2-10 mA DC (Load resistance 1200Ω max.)
C: 1-5 mA DC (Load resistance 2400Ω max.)
D: 0-20 mA DC (Load resistance 600Ω max.)
E: 0-16 mA DC (Load resistance 750Ω max.)
F: 0-10 mA DC (Load resistance 1200Ω max.)
G: 0-1 mA DC (Load resistance $12 \mathrm{k} \Omega$ max.)
Z: Specify current (See OUTPUT SPECIFICATIONS)
Voltage
1: $0-10 \mathrm{mV}$ DC (Load resistance $10 \mathrm{k} \Omega \mathrm{min}$.)
2: 0-100 mV DC (Load resistance $100 \mathrm{k} \Omega \mathrm{min}$.)
3: 0-1 V DC (Load resistance $1000 \Omega \mathrm{~min}$.)
4: 0-10 V DC (Load resistance $10 \mathrm{k} \Omega \mathrm{min}$.)
5: $0-5 \mathrm{~V}$ DC (Load resistance $5000 \Omega \mathrm{~min}$.)
6: 1-5 V DC (Load resistance $5000 \Omega \mathrm{~min}$.)
4W: -10 - +10 V DC (Load resistance $10 \mathrm{k} \Omega \mathrm{min}$.)
5W: -5 - +5 V DC (Load resistance 5000Ω min.)
0: Specify voltage (See OUTPUT SPECIFICATIONS)

[4] OUTPUT 2

Current

A: 4-20 mA DC (Load resistance 350Ω max.)
B: 2-10 mA DC (Load resistance 700Ω max.)
C: 1-5 mA DC (Load resistance 1400Ω max.)
D: 0-20 mA DC (Load resistance 350Ω max.)
E: 0-16mA DC(Load resistance 430Ω max.)
F: 0-10 mA DC (Load resistance 700Ω max.)
G: 0-1 mA DC (Load resistance 7000Ω max.)
Z: Specify current (See OUTPUT SPECIFICATIONS)

Voltage

Same range availability as Output 1

[5] POWER INPUT

AC Power

B: 100 V AC
C: 110 VAC
D: 115 V AC
F: 120 V AC
G: 200 V AC
H: 220 V AC
J: 240 V AC
DC Power
S: 12 V DC
R: 24 V DC
V: 48 V DC

[6] OPTIONS

blank: none
/Q: With options (specify the specification)

SPECIFICATIONS OF OPTION: Q (multiple selections) COATING (For the detail, refer to M-System's web site.)
/C01: Silicone coating
/C02: Polyurethane coating
/C03: Rubber coating
TERMINAL SCREW MATERIAL
/S01: Stainless steel

RELATED PRODUCTS

- Programming Unit (model: PU-2x)
- PC configurator software (model: JXCON)

Downloadable at M-System's web site.
A dedicated cable is required to connect the module to the
PC. Please refer to the internet software download site or the users manual for the PC configurator for applicable cable types.

GENERAL SPECIFICATIONS

Construction: Plug-in
Connection: M3.5 screw terminals
Screw terminal: Chromated steel (standard) or stainless steel
Housing material: Flame-resistant resin (black)
Isolation: Input to output 1 to output 2 to power
Overrange output: Approx. -10 to $+120 \%$ at $1-5 \mathrm{~V}$
Zero adjustment: -5 to +5 \% (front)
Span adjustment: 95 to 105 \% (front)
Adjustable individually for each output 1 and output 2.
Adjustments: Programming Unit (model: PU-2x); function and parameters, input range, zero and span, etc.
(Input range can be changed with Codes U1, U2 or U3 and limited within ranges of each code type.)
(Refer to the users manual of JXCON for the adjustments configurable with JXCON.)

INPUT SPECIFICATIONS

DC Current:

Shunt resistor attached to the input terminals (0.5 W)
■ DC Voltage: -10 - +10 V DC
Minimum span: 3 mV
Offset: Max. 3 times span
Default setting will be used if not otherwise specified.
U1: 0-100 mV DC
U2: 0-1 V DC
U3: 0-10V DC

OUTPUT SPECIFICATIONS

DC Current: 0-20 mA DC
Minimum span: 1 mA
Offset: Max. 1.5 times span
Load resistance: Output drive 12 V max. for Output 1; 7 V max. for Output 2
■ DC Voltage: -10-+10 V DC
Minimum span: 5 mV
Offset: Max. 1.5 times span
Load resistance: Output drive 1 mA max.; at $\geq 0.5 \mathrm{~V}$

INSTALLATION

Power input
-AC: Operational voltage range: rating $\pm 10 \%$,
50/60 $\pm 2 \mathrm{~Hz}$, approx. 3.5 VA
-DC: Operational voltage range: rating $\pm 10 \%$
ripple 10 \%p-p max., approx. $2.6 \mathrm{~W}(110 \mathrm{~mA}$ at 24 V)
Operating temperature: -5 to $+55^{\circ} \mathrm{C}\left(23\right.$ to $131^{\circ} \mathrm{F}$)
Operating humidity: 30 to 90% RH (non-condensing)
Mounting: Surface or DIN rail
Weight: $400 \mathrm{~g}(0.88 \mathrm{lb})$

PERFORMANCE in percentage of span

Accuracy: ± 0.1 \%
Temp. coefficient: $\pm 0.015 \% /{ }^{\circ} \mathrm{C}\left(\pm 0.008 \% /{ }^{\circ} \mathrm{F}\right)$
Response time: $\leq 0.5 \mathrm{sec}$. ($0-90 \%$) without any function
setting
Line voltage effect: ± 0.1 \% over voltage range
Insulation resistance: $\geq 100 \mathrm{M} \Omega$ with 500 V DC
Dielectric strength: 2000 V AC @1 minute
(input to output to power to ground)
1000 V AC @ 1 minute (output 1 to output 2)

EXTERNAL DIMENSIONS unit: mm (inch)

- When mounting, no extra space is needed between units.

TERMINAL ASSIGNMENTS unit: mm (inch)

Input shunt resistor attached for current input.

SCHEMATIC CIRCUITRY \& CONNECTION DIAGRAM

*Input shunt resistor attached for current input.

FUNCTIONS

- MOVING AVERAGE OUTPUT

This unit samples input signals every H seconds and outputs proportionally to an average of N numbers of sampled data. When a new input is sampled after another H seconds, it gives up the oldest sample and calculates a new average including the latest sample and outputs proportionally.

H : sampling cycle

(0.1 to 100.0 seconds adjustable)
N : number of samples to be calculated (1 to 8 adjustable)

■DEAD-TIME COMPUTING

This unit does not respond to an input signal for a preset dead-time duration. In addition, with adjusting a time constant T, it generates a first order lag output after the dead-time.
$\mathrm{X}_{0}(\mathrm{~s})=\frac{\mathrm{e}^{-\mathrm{Ls}}}{1+\mathrm{T}} \mathrm{s}_{1}(\mathrm{~s})+\mathrm{H} \times \mathrm{N}(\mathrm{s})$
X_{0} : output
X_{1} : input
Dead Time $=\mathrm{H} \times \mathrm{N}(\mathrm{s})(\mathrm{H} \leq \mathrm{T})$
H: sampling cycle
(0.1 to 100.0 seconds adjustable)
N : numbers of samples to be calculated (1 to 8 adjustable)
T : time constant
(0.0 to 100.0 seconds adjustable)

-Step Input with Dead-Time

-Step Input with Dead-Time Plus Time Constant

■DELAY BUFFER

This unit generates a first order lag output.
$X_{0}(s)=\frac{1}{1+T s} X_{1}(s)$
X_{0} : output
X_{1} : input
T : time constant
(0.0 to 100.0 second adjustable)

■ LEAD-TIME COMPUTING

This unit operates a lead-time equation.
$\mathrm{X}_{0}(\mathrm{~s})=(1+\mathrm{T} \mathrm{s}) \mathrm{X}_{1}(\mathrm{~s})$
X_{0} : output
X_{1} : input
T : lead-time constant
(0.0 to 100.0 seconds adjustable)

■ RAMP BUFFER

This unit output does not change faster than a preset maximum rate, positive CP and negative CN , no matter how fast its input changes.

CP: maximum rate of positive output change (0.00 to $200.00 \% /$ second adjustable)
CN : maximum rate of negative output change (0.00 to $200.00 \% /$ second adjustable)

■ MEAN AVERAGE OUTPUT

This unit samples input signals every H seconds and, excluding U numbers of largest samples and L numbers of smallest samples, outputs proportionally to an average of the rest $[\mathrm{N}-(\mathrm{U}+\mathrm{L})]$ of sampled data. When the number of samples to be calculated equals 0 or less, it outputs an error.

H: sampling cycle
(0.1 to 100.0 seconds adjustable)
N : number of samples to be calculated (2 to 8 adjustable)
U : number of largest samples to be cut off (0 to 7 adjustable)
L : number of smallest samples to be cut off (0 to 7 adjustable)

-Step Input with Time Constant

- Step Input with Time Constant (Lead)

-Step Input with Rate-of-Change Limit

-Example ($\mathrm{N}=5, \mathrm{U}=1, \mathrm{~L}=1$)

Specifications are subject to change without notice.

