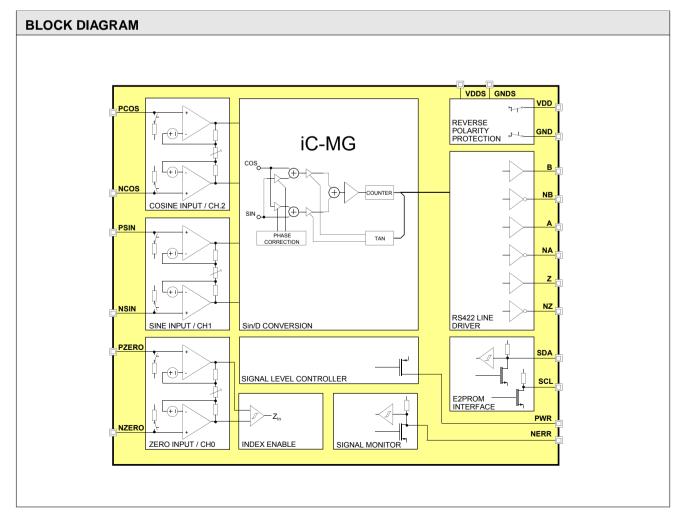

8-Bit Sin/Cos INTERPOLATION IC WITH RS422 DRIVER

Rev D1, Page 1/22

FEATURES

- Real-time tracking, no-missing-code interpolation with selectable factors: x1, x2, x4, x5, x8, x10, x16, x20, x25, x50
- High input frequency of up to 500 kHz at x1 and x2 (200 kHz at x4 and x5, 100 kHz at x10, 20 kHz for x50)
- Excellent accuracy (typ. 0.6 LSB) and repeatability (typ. 0.1 LSB)
- Differential PGA inputs with selectable input resistance for voltage and current signals
- ♦ Adjustable signal conditioning for offset, amplitude, phase
- Unique signal and calibration stabilization feature: supply of encoder LED or MR bridge via controlled 40 mA current source
- ♦ Fail-safe RS422 encoder quadrature outputs with index signal
- ♦ Adjustable index position and length (from 1/4 to 1 T)
- Preselectable minimum phase distance for fail-safe counting
- Clipping, loss-of-signal and loss-of-tracking indication
- Setup via serial EEPROM interface
- Sub-system power switch offers reverse polarity protection for the overall system
- ♦ Single 5 V supply, operation from -25(40) °C to +100 °C

Optical and magnetic position


APPLICATIONS

Rotary encoders

Linear encoders

sensors

٠

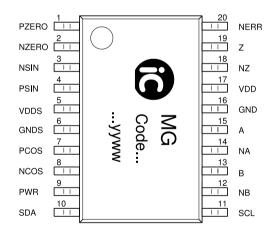
Copyright © 2008, 2014 iC-Haus

Rev D1, Page 2/22

DESCRIPTION

iC-MG is a non-linear A/D converter which, by applying a count-safe vector principle, digitizes sine/cosine sensor signals with selectable resolution and hysteresis. The angle position is output incrementally via differential RS422 drivers as an encoder quadrature signal with an index pulse. The minimum phase distance can be preselected, to enhance the systems's noise immunity and to allow for fail-safe counting.

The PGA front-end permits differential (VDIFF or ID-IFF mode) or single-ended input signals (VREF or IREF mode); high impedance (V modes) and low impedance (I modes) can be selected. By this adaptation MR sensor bridges or photosensors can be directly connected.


The integrated signal conditioning unit allows signal amplitudes and offset voltages to be calibrated and

also any phase error between the sine and cosine signals to be corrected.

For the purpose of signal stabilization (to minimize the effects of temperature and aging), the chip's power supply controller can take over LED control in optical systems (40 mA current-source output PWR). If MR sensors are connected this driver stage also powers the measuring bridges. If the control thresholds are reached this is signaled at alarm message output NERR (signal loss due to wire breakage, short circuiting, dirt or aging, for example).

iC-MG is protected against a reversed power supply voltage; the integrated supply switch for loads of up to 20 mA extends this protection to cover the overall system. The device is configured via an external EEPROM.

PACKAGING INFORMATION

PIN CONFIGURATION TSSOP20

PIN FUNCTIONS

No. Name Function 1 PZERO Input Zero Signal + 2 NZERO Input Zero Signal -3 NSIN Input Sine Signal -Input Sine Signal + 4 PSIN 5 VDDS¹⁾ Switched Supply Output and Internal Analog Supply Voltage (reverse pol. proof, load 20 mA max.) 6 GNDS¹⁾ Switched Ground (reverse pol. proof) 7 PCOS Input Cosine Signal + 8 NCOS Input Cosine Signal -9 PWR **Controlled Power Supply Output** (high-side current source) 10 SDA Serial E2PROM Interface, data line 11 SCL Serial E2PROM Interface, clock line 12 NB Incremental Output B-13 B Incremental Output B+ 14 NA Incremental Output A-15 A Incremental Output A+ 16 GND Ground 17 VDD +4.3 ... 5.5 V Supply Voltage 18 NZ Incremental Index Output Z-Incremental Index Output Z+ 19 Z 20 NERR Alarm Message and Test Signal Output (e.g. index enable signal Zin)

Rev D1, Page 3/22

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V()	Voltage at VDD, A, NA, B, NB, Z, NZ, SCL, SDA, PWR		-6	6	V
G002	V()	Voltage at NERR		-6	8	V
G003	V()	Voltage Pin vs. Pin			6	V
G004	V()	Voltage at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, SCL, SDA		-0.3	VDDS +0.3	V V
G005	I(VDD)	Current in VDD		-20	400	mA
G006	I()	Current in VDDS, GNDS		-50	50	mA
G007	I()	Current in PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, SCL, SDA, NERR		-20	20	mA
G008	I()	Current in A, NA, B, NB, Z, NZ		-100	100	mA
G009	I(PWR)	Current in PWR		-100	20	mA
G010	Vd()	ESD Susceptibility at all pins	HBM, 100 pF discharged through 1.5 k Ω		2	kV
G011	Tj	Junction Temperature		-40	150	°C
G012	Ts	Storage Temperature		-40	150	°C

THERMAL DATA

Operating Conditions: VDD = 4.3...5.5 V

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-25		100	°C
		(extended range to -40 °C on request)					

Rev D1, Page 4/22

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Gene	al						
001	V(VDD)	Permissible Supply Voltage	Load current I(VDDS) to 10 mA Load current I(VDDS) to 20 mA	4.3 4.5		5.5 5.5	V V
002	I(VDD)	Supply Current	$T_j = -40125 ^{\circ}C$, no load $T_j = 27 ^{\circ}C$, no load		12	25	mA mA
003	VDDon	Turn-on Threshold VDD		3.6	4.0	4.3	V
004	VDDoff	Turn-off Threshold VDD		3.0	3.5	3.8	V
005	VDDhys	Turn-on Threshold Hysteresis		0.4			V
006	Vcz()hi	Clamp Voltage hi at all pins				11	V
007	Vc()hi	Clamp Voltage hi at inputs SCL, SDA	Vc()hi = V() - V(VDD), I() = 1 mA	0.4		1.5	V
008	Vc()hi	Clamp Voltage hi at inputs PSIN, NSIN, PCOS, NCOS, PZERO, NZERO	Vc()hi = V() - V(VDD), I() = 4 mA	0.3		1.2	V
009	VC()lo	Clamp Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
010	Irev(VDD)	Reverse-Polarity Current VDD vs. GND	V(VDD) = -5.5V4.3 V	-1		1	mA
Inputs	and Signal	Conditioning: PSIN, NSIN, PCO	S, NCOS, PZERO, NZERO				
101	Vin()sig	Permissible Input Voltage Range		0.75		VDDS - 1.5	V
100	P. A. 1		RSC, RZ = 0x9	0		VDDS	V
102	lin()sig		RSC(0), RZ(0) = 0, BIASSC = 0 RSC(0), RZ(0) = 0, BIASSC = 1	-300 10		-10 300	μΑ μΑ
103	lin()	Input Current	RSC, RZ = 0x1	-10		10	μA
104	Rin()	Input Resistance vs. VREFin()	Nominal values following Table 8	70	100	130	%
105	TCRin()	Input Resistance Temperature Coefficient			0.15		%/K
106	VREFin()	Input Reference Voltage	No load, nominal values following Table 9	90	100	110	%
107	G	Gain Factor (Coarse x Fine)	RSC(3), RZ(3) = 0, GRx = 0x0, GFx = 0x00 RSC(3), RZ(3) = 0, GRx = 0x7, GFx = max.		2 100		
			RSC(3), RZ(3) = 1, GRx = 0x0, GFx = 0x00 RSC(3), RZ(3) = 1, GRx = 0x7, GFx = max.		0.5 25		
108	G-LSB	Least Significant Gain Factor Cal. Step	Sine channel Cosine channel Zero channel		1.015 1.06 1.06		
109	G-INL	Integral Non-Linearity of Gain Factor Cal.		-1		1	LSE
110	GR-CR	S/C-Chan. Gain Ratio Calibration Range	-	39		255	%
111	Vin()diff	Recommended Diff. Input Signal Level	Vin()diff = V(PCHx) - V(NCHx); RSC, RZ ≠0x9 RSC, RZ = 0x9	10 40		500 2000	mVp mVp
112	Vin()os	Input Offset Voltage	Referenced to side of input pins		25		μV
113	OFS/C-CR	S/C Offset Calibration Range	Referenced to source VOSSC; ORS, ORC = 00 ORS, ORC = 01 ORS, ORC = 10 ORS, ORC = 11		±100 ±200 ±600 ±1200		%V(%V(%V(%V(
114	OFS/C- LSB	Least Significant S/C-Offset Cal. Step	Referenced to source VOSSC; ORS, ORC= 00		0.79		%
115	OFZ-LSB	Least Significant Z-Offset Cal. Step	Referenced to VOSZ; ORZ = 00		3.2		%
116	OFx-INL	Integral Non-Linearity of Offset Cal.		-5		5	LSE
117	PH-CR	S/C Phase Calibration Range			±20		0

Rev D1, Page 5/22

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
118	PH-LSB	Least Significant S/C Phase Cal. Step			0.63		0
119	PH-INL	Integral Non-Linearity of S/C Phase Cal.		-0.8		0.8	0
120	fin()max	Permissible Max. Inp. Frequency	with interpolation of x1, x2	200 500			kHz kHz
Sine-t	o-Digital C	onversion					
201	AAabs	Absolute Angle Accuracy (follow- ing calibration)	Referred to 360 deg input signal, ideal and quasi-stable input signals, SELHYS = 0		1	2	0
202	AArel	Relative Angle Accuracy	Referred to A/B output period, ideal and quasi- stable input signals	-10		+10	%
203	AAR	Absolute Angle Repeatability	See 201; VDD = const., Tj = const.		0.2		0
Outpu	it Line Driv	vers: A, NA, B, NB, Z, NZ		U			.11.
501	Vs()hi	Saturation Voltage hi	Vs()hi = VDD - V(); I() = -20 mA			400	mV
502	Vs()lo	Saturation Voltage lo	I() = 20 mA			400	mV
503	lsc()hi	Short-Circuit Current hi		-60	-40	-20	mA
504	lsc()lo	Short-Circuit Current lo		20	40	60	mA
505	llk()tri	Tristate Leakage Current	TRIHL(1:0) = 11		20	100	μA
506	tr()	Rise Time hi	RL = 100 Ω to GNDS; SSR(1:0) = 01 SSR(1:0) = 10	5 20		40 140	ns ns
507	tf()	Rise Time Io	RL = 100 Ω to VDD; SSR(1:0) = 01 SSR(1:0) = 10	5 30		40 140	ns ns
508	Ri()cal	Source Impedance	With calibration modes		2.5	4	kΩ
509	l()cal	Permissible Load Current	With calibration modes	-3		3	μA
510	llk()	Leakage Current with Reversed Supply Voltage				100	μA
511	MTD()	Min. Phase Distance Tolerance	referred to nominal value	-25		+25	%
Contr	olled Powe	r Supply: PWR	·				
601	Vs()hi	Saturation Voltage hi	Vs()hi = VDD - V(); ADJ(8:0) = 0x19F, I() = -5 mA ADJ(8:0) = 0x1BF, I() = -10 mA ADJ(8:0) = 0x1DF, I() = -25 mA ADJ(8:0) = 0x1FF, I() = -40 mA			1 1 1 1.2	V V V V
602	Isc()hi	Short-Circuit Current hi	V() = 0VDD - 1 V; ADJ(8:0) = 0x19F ADJ(8:0) = 0x1BF ADJ(8:0) = 0x1BF V(PWR) = 0VDD - 1.2 V; ADJ(8:0) = 0x1FF	-10 -20 -50 -100		-4 -8 -20 -40	mA mA mA mA
Bias (Current So	urce and Reference Voltages					
801	VBG	Bandgap Reference Voltage		1.2	1.25	1.3	V
802	VPAH	Reference Voltage Source		45	50	55	%VDD
803	VOSref	S/C a. Z Offset Cal. Reference Voltage Source		450	500	550	mV
804	IBN	Bias Current Source	CFGIBN = 0x0 CFGIBN = 0xF	110		370	μA μA
			calibrated at Tj = $25 \degree C$	180	200	220	μA

Rev D1, Page 6/22

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Message C	Dutput: NERR]				
B01	Vs()lo	Saturation Voltage lo	Versus GND; I() = 4 mA			0.4	V
B02	lsc()lo	Short-Circuit Current lo Versus GND; V(NERR) ≤ VDD		4	5	8	mA
			V(NERR) > VTMon		2		mA
B03	lpu()	Pull-Up Current Source	V() = 0VDD - 1 V; EPU = 1	-400	-300	-200	μA
B04	VTMon	Setup Preparation Threshold	Increasing voltage at NERR			VDD +2	V V
B05	VTMoff	Setup Trigger Threshold	Decreasing voltage at NERR	VDD + 0.5			V
B06	VTMhys	Setup Trigger Threshold Hystere- sis	VTMhys = VTMon - VTMoff	0.15	0.3		V
B07	dt()lo	Alarm Indication Time Tolerance	Nominal time see Table 37	-25		+25	%
Suppl	y Switch ar	d Reverse Polarity Protection: V	DDS, GNDS				0
C01	I(VDDS)	Permissible VDDS Load Current		-20		0	mA
C02	Vs()	Saturation Voltage VDDS vs. VDD	Vs() = VDD - V(VDSS); I(VDDS) = -20 mA			250	mV
C03	Vs()	Saturation Voltage GNDS vs. GNDS	Vs() = V(GNDS) - GND; I(GNDS) = 20 mA			250	mV
C04	C()	Backup Capacitor Analog Supply VDDS vs. GNDS		100			nF
Serial	EEPROM I	nterface: SDA, SCL					
D01	Vs()lo	Saturation Voltage lo	I() = 4 mA			400	mV
D02	lsc()	Short-Circuit Current lo		4		75	mA
D03	Vt()hi	Input Threshold Voltage hi				2	V
D04	Vt()lo	Input Threshold Voltage lo		0.8			V
D05	Vt()hys	Input Threshold Hysteresis	Vt()hys = Vt()hi - Vt()lo	300	500		mV
D06	lpu()	Input Pull-Up Current	V() = 0VDDS - 1 V	-600	-300	-60	μA
D07	Vpu()	Input Pull-Up Voltage	V() = VDDS - V(); I() = -5 µA			0.4	V
D08	f(SCL)	Clock Frequency SCL		60	80	100	kHz
D09	tbusy()cfg	Configuration Sequence	Single reading sequence		36	48	ms
Temp	erature Mor	nitoring					
E01	Toff	Shutdown Temperature			155		°C
E02	Thys	Shutdown Temperature Hystere-			15		°C

8-Bit Sin/Cos INTERPOLATION IC WITH RS422 DRIVER

Rev D1, Page 7/22

DEVICE SETUP

Register Map	9 Page 8
Serial EEPRO DEVID: CHKSUM:	DM Interface Page 10 Device ID of config. EEPROM (0x50) CRC of chip configuration data (address range 0x00 to 0x2E)
	SourcePage 11 Bias Trimming
Operating M MODE:	odes Page 11 Mode select
Input Config INMODE: RSC:	urations Page 12 Diff./Single-Ended Input Signal Mode I/V Mode and Input Resistance, S/C Channel
BIASSC: RZ:	Bias Voltage, S/C Channel I/V Mode and Input Resistance, Z Channel
BIASZ:	Bias Voltage, Z Channel
S/C Signal P GRSC: GFS: GFC: ORS: ORC: OFS: OFC: VOSSC: VDCS: VDCC: PHSC:	athPage 13S/C Channel Gain RangeGain Factor SineGain Factor CosineOffset Range SineOffset Range CosineOffset Factor SineOffset Factor CosineS/C Channel Offset Reference SourceIntermediate Voltage SineIntermediate Voltage CosineS/C Channel Phase Correction

Controlled F	Power SupplyPage 16
ADJ:	PWR Output Adjustment
Z Signal Pat	h Page 15
GRZ:	Z Channel Gain Range
GFZ:	Gain Factor Zero
ORZ:	Offset Range Zero
OFZ:	Offset Factor Zero
VOSZ:	Z Channel Offset Reference Source
Zero Signal	SetupPage 18
CFGZ:	Zero Signal Logic
CFGZPOS:	Zero Signal Positioning
Sine-to-Digi	tal Conversion Page 17
SELRES:	Converter Resolution
SELHYS:	Converter Hysteresis
Output Setti	i ngs Page 18
MTD:	Minimum Phase Distance
SSR:	Output Slew Rate
TRIHL:	Output Drive Mode
Error Monite	oring and Alarm Output Page 19
EMTD:	Minimal Alarm Indication Time
EPH:	Alarm Output Logic
EPU:	Alarm Output Pull-Up Enable
EMASKA:	Error Event Mask for Alarm Indication
EMASKO:	Error Event Mask for Driver Shutdown

8-Bit Sin/Cos INTERPOLATION IC WITH RS422 DRIVER

Rev D1, Page 8/22

Registe	er Map							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Serial E	EPROM Inter	face	1		1		1	
0x00	0				DEVID(6:0)			
Bias Cu	rrent Source	<u> </u>						
0x01		CFGIE	3N(3:0)		0	0	0	0
Operati	ng Modes							
0x02	1	1	0	0		MOD	E(3:0)	
Input Co	onfigurations							
0x03	0	0	0	0	0	INMODE	1	1
S/C Sig	nal Path, Inpu	t Configuration	on					
0x04			GFC(4:0)				GRSC(2:0)	
0x05		GFS	6(3:0)		0	0	0	0
0x06	VDCS(0)	0	0	0	0		GFS(6:4)	
0x07	0	0	0			VDCS(5:1)		-
0x08	ORS(0)			VDC	C(5:0)	I	1	0
0x09			6(3:0)		0	0	0	ORS(1)
0x0A	0	0	ORC	C(1:0)		OFS(7:4)		
0x0B				OFC(6:0)	1		1	0
0x0C		PHSC(2:0)		0	0	0		OFC(7)
0x0D	0	0	0	1	1	PHSC(5:3) RSC(3:0)		
0x0E	1	BIASSC	V055	C(1:0)		RSU	/(3:0)	
	led Power Su	1				-		
0x0F	ADJ(0)	0	0	1	0	0	0	0
0x10				ADJ	(8:1)			
	I Path, Input (Configuration						
0x11			GFZ(4:0)	?(E·O)			GRZ(2:0)	Z(1:0)
0x12 0x13	0	BIASZ		2(5:0) Z(1:0)		D7/	(3:0)	2(1.0)
	-	BIASZ	003	2(1.0)			(3.0)	
	onitoring			EMAS	KA(7:0)			
0x14 0x15	1	0		EMTD(2:0)	NA(7.0)	EPH	0	EMASKA(8)
0x15 0x16	1	U		· /	KO(7:0)	LTU	0	
0x10	0	0	0	0	0	EPU	0	EMASKO(8)
0x18	0	0	0	0	0	0	0	0
	gnal Setup							
0x19		0	0	0		CFG	Z(3:0)	
0x1A	-	-			OS(7:0)		· /	
	Digital Conve	ersion, Minimu	um Phase Dis		, /			
0x1B					ES(7:0)			
0x1C	0				SELRES(14:8	3)		
0x1D		MTC	0(3:0)		,	,	YS(3:0)	
Output	Settings				1			
0x1E	0	0	1	0	SSR	(1:0)	TRIF	HL(1:0)
	1	1	1	1	1		1	-

8-Bit Sin/Cos INTERPOLATION IC WITH RS422 DRIVER

Rev D1, Page 9/22

Registe	r Map									
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reserve	d Memory Section 1									
0x1F	Internal use only; keep all bits at zero for initialization									
0x20			nternal use c	only; keep all	bits at zero fo	or initialization	า			
Reserve	d Memory Se	Memory Section 2								
0x21	0	0	0	0	1	0	0	0		
0x22					bits at zero fo					
0x23		I		· ·	bits at zero fo		า			
0x24					ecific OEM da					
0x25					ecific OEM da					
0x26					ecific OEM da					
0x27		Application-specific OEM data								
0x28				1 1	ecific OEM da					
0x29					ecific OEM da					
0x2A					ecific OEM da					
0x2B					ecific OEM da					
0x2C					ecific OEM da					
0x2D					ecific OEM da					
0x2E			A	oplication-spe	ecific OEM da	ita				
CRC Dat	а									
0x2F				CHKSI	JM(7:0)					
Reserve	ed Memory Section 3									
0x30	Internal use only; keep all bits at zero for initialization									
0x31					bits at zero fo					
0x32				<u> </u>	bits at zero fo					
0x33					bits at zero fo					
Notes		All 0 and 1 entries are mandatory for device initialization								

Table 4: Register Map

Rev D1, Page 10/22

SERIAL EEPROM INTERFACE

External EEPROM

The serial configuration interface consists of the two pins SCL and SDA and enables read access to a serial I²C EEPROM. This EEPROM must comply with the following specifications:

Operation from 3.3 V to 5 VMin. size 512 bit, 64x8Max. size 8 kbit, 1024x8device ID $0x50 = 1010\ 000$ (without R/W bit) device ID $0xA0 = 1010\ 0000$ (with R/W bit of 0)

Recommended devices:

Atmel AT24C01, ST M24C01, ST M24C02 (2K), ROHM BR24L01A-W, BR24L02-W

NOTE:

Devices ignoring A2...0 address bits are not suitable. Devices using a Word Address with don't care bits are not suitable.

Power Up Configuration

Once the supply has been switched on iC-MG reads the configuration from the external EEPROM which has the device ID 0x50. Bit errors in the 0x00 to 0x2F memory area are monitored by the CRC deposited in register CHKSUM (see program example; the polynomial used is "1 0001 1101"). Should an error occur while the data is being read in the readin process is repeated; the system aborts following a fourth faulty attempt and tristates the output drivers.

Triggering Reboot

As an alternative to a power down reset iC-MG can be triggered to again read in the configuration via pin NERR. To this end pin voltage V(NERR) must initially exceed threshold voltage VTMon (Elec. Char. item B04). Once the pin voltage has dropped to below VT-Moff (Elec. Char. item B05) iC-MG starts communicating with the EEPROM. The device ID stored in register DEVID is used to address the EEPROM.

NOTE:

Connecting pin NERR to a cable can not be recommended as this pin is sensitive to the function described above.

Example of CRC Calculation Routine

```
unsigned char ucDataStream = 0;
int iCRCPoly = 0x11D;
unsigned char ucCRC=0;
int i = 0;
ucCRC = 1; // start value !!!
for (iReg = 0; iReg<47; iReg ++)
{
    ucDataStream = ucGetValue(iReg);
    for (i=0; i<=7; i++) {
        if ((ucCRC & 0x80) != (ucDataStream & 0x80))
            ucCRC = (ucCRC << 1) ^ iCRCPoly;
        else
            ucCRC = (ucCRC << 1);
        ucDataStream = ucDataStream << 1;
    }
}
```

Rev D1, Page 11/22

fHaus

OPERATING MODES

MODE	Adr 0x02, bit 3:0							
Code	Operating Mode	Pin A	Pin NA	Pin B	Pin NB	Pin Z	Pin NZ	NERR
0x00	ABZ Mode	A	NA	В	NB	Z	NZ	NERR
0x01	Calibration Mode 1		VREFIZ	VREFISC	IBN	PCH-Z	NCH-Z	
0x02	Calibration Mode 2	PCH-S	NCH-S	PCH-C	NCH-C	VDCS	VDCC	
0x0B	System Test Mode *	A ₄	A ₈	B ₄	B ₈	Z _{In}		NERR
	* Note: Setting SELRES=0x1B0 and SELHYS=0xF is mandatory.							

Table 5: Operating Modes

iC-MG has several modes of operation which are set via MODE. In addition to the primary operational mode ABZ Mode for the output of encoder quadrature signals via differential line drivers both analog and digital calibration signals can be selected which can be used to set up the integrated signal conditioning unit.

ABZ Mode

In ABZ Mode complementary signals are always output. Here, converter setting SELRES determines the A/B pulse count and zero signal settings CFGZ and CFGPOS the width and position of the generated zero signal (dependent on an enable from Z_{ln}).

Calibration Mode 1, Mode 2

So that signal amplitudes and offset voltages can be calibrated internal analog signals are switched to the output pins directly and the digital line drivers shut down. Due to internal resistances of up to $4 k\Omega$ a highimpedance measurement is advisable.

In Calibration Mode 1 bias current source IBN and the internal zero signal are available after the input amplifier (signals PCH-Z and NCH-Z). The calibration of IBN is described on page 11, that of the zero signal on page 15.

BIAS CURRENT SOURCE CALIBRATION

The calibration of the bias current source in operation mode Calibration 1 is prerequisite for adherence to the given electrical characteristics and also instrumental in the determination of the chip timing (e.g. clock frequency at SCL). For setup purposes the IBN bias current is measured using a $10 k\Omega$ resistor by pin VDDS connected to pin NB. The setpoint is 200 µA which is equivalent to a voltage drop of 2 V.

NOTE: The measurement delivers a false reading when outputs are tristate (due to a configuration error after cycling power, for instance).

CFGIBN	Adr 0x01, bit 7:4		
Code k	$IBN \sim \frac{31}{39-k}$	Code k	$IBN \sim rac{31}{39-k}$
0x0	79%	0x8	100 %
0x1	81 %	0x9	103 %
0x2	84 %	0xA	107 %
0x3	86 %	0xB	111 %
0x4	88%	0xC	115 %
0x5	91 %	0xD	119%
0x6	94 %	0xE	124 %
0x7	97 %	0xF	129%

Table 6: Bias Current Source Calibration

In Calibration Mode 2 the conditioned sine and cosine signals are output (signals PCH-S, NCH-S, PCH-C and NCH-C). Additionally, the intermediate potentials of both input channels are also available, with VDCS for the sine and VDCC for the cosine channel. The calibration of these intermediate voltages is described on page 14.

System Test Mode

System Test Mode permits the fine adjustment of the sine and cosine input signals using digital signals. The registers mentioned above must also be set for this mode.

The A₄ duty cycle acts as a measure for the offset of the sine channel, with the B₄ duty cycle a measure for that of the cosine channel. The duty cycle at A₈ represents the phase error between sine and cosine or any deviation from the ideal value of 90°. The calibration of differing signal amplitudes enables the duty cycle at B₈. A duty cycle of 50 % is the calibration target for all digital test signals.

Signal Z_{ln} is the unmasked digitized zero signal.

INPUT CONFIGURATIONS

All input stages are configured as instrumentation amplifiers and thus directly suitable for differential input signals. Referenced input signals can be processed as required; in Single-Ended Input Mode the NZERO input acts as a reference, replacing the input signals from NSIN and NCOS. Both current and voltage signals can be processed as input signals, selected by RSC(0) and RZ(0).

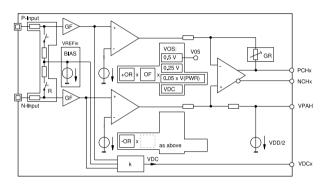


Figure 1: Input instrumentation amplifier and signal conditioning

Current Signals

In I Mode an input resistor Rin() becomes active at each input pin, converting the current signal into a voltage signal. The input resistance Rin() consists of a pad wiring resistor and resistor Rui() which is linked to the adjustable bias voltage source VREFin().

The following table shows the possible selections, with Rin() giving the typical resulting input resistance (see Electrical Characteristics for tolerances). The input resistor should be set in such a way that intermediate potentials VDCS and VDCC lie between 125 mV and 250 mV (verifiable in Calibration Mode 2).

NB. The input circuit is not suitable for back-to-back photodiodes.

Voltage Signals

In V Mode an optional voltage divider can be selected which reduces unacceptably large input amplitudes to

ca. 25%. The circuitry is equivalent to the resistor chain in I Mode; the pad wiring resistor is considerably larger here, however.

INMODE	Adr 0x03, bit 2
Code	Function
0	Differential input signals
1	Single-ended input signals *
Note	* Input NZERO is reference for all inputs.

RSC	Adr 0x0E, bit 3:0		
RZ	Adr 0x13, bit 3:0		
Code	Nominal Rin()	Internal Rui()	I/V Mode
-000	1.7 kΩ	1.6 kΩ	Current input
-010	2.5 kΩ	2.3 kΩ	Current input
-100	3.5 kΩ	3.2 kΩ	Current input
-110	4.9 kΩ	4.6 kΩ	Current input
1—1	20 kΩ	5kΩ	Voltage input 4:1*
0—1	high	1 MΩ	Voltage input 1:1
	impedance		
Notes	For single-ended signals identical settings of RIN0 and RIN12 are required. *) VREFin is the voltage divider's footpoint. Input currents may be positive or negative (Vin > VREFin, or Vin < VREFin)		

Table 8: I/V Mode and Input Resistance

BIASSC	Adr 0x0E, bit 6
BIASZ	Adr 0x13, bit 6
Code	Function
0	VREFin = 2.5 V for low-side current sinks (e.g. photodiodes with common anode at GNDS)
1	VREFin = 1.5 V for high-side currrent-sources (e.g. photodiodes with common cathode at VDDS) for voltage sources versus ground (e.g. iC-SM2, Wheatstone sensor bridges)

Table 9: Input Bias Voltage

Rev D1, Page 13/22

Haus

(iC)

S/C SIGNAL PATH and CALIBRATION

The analog voltage signals needed to calibrate the sine signals can be measured in *Calibration Mode 2*. The characteristic digital parameters for offset, amplitude and phase errors can be measured in *System Test Mode*.

S/C Gain Settings

The gain is set in four stages:

1. The sensor supply tracking is shut down and the constant current source for the PWR output set to a suitable output current (register ADJ; current value close to the later operating point).

2. The coarse gain is selected so that differential signal amplitudes of ca. 1 Vpp are produced internally (signal PCHx vs. NCHx for the sine or cosine channel).

3. Using fine gain factor GFC the cosine signal amplitude is then adjusted to 1 Vpp.

4. The sine signal amplitude can then be calibrated to the cosine signal amplitude via fine gain factor GFS.

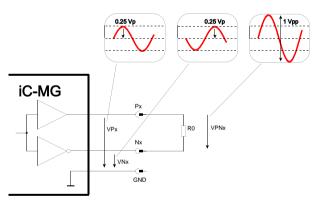


Figure 2: Definition of 1 Vpp signal. Termination R0 must be high-ohmic during all *Test* and *Calibration* modes.

GRSC	Adr 0x04, bit 2:0	
Code	Range with RSC=0x9	Range with RSC≠0x9
0x0	0.5	2.0
0x1	1.0	4.1
0x2	1.3	5.3
0x3	1.7	6.7
0x4	2.2	8.7
0x5	2.6	10.5
0x6	3.3	13.2
0x7	4.0	16.0

Table 10: S/C-Channel Gain Range

GFC	Adr 0x04, bit 7:3
Code	Factor
0x00	1.00
0x01	1.06
	6.25 ^{GFC} / ₃₁
0x1F	6.25

Table 11: Gain Factor Cosine

GFS	Adr 0x06, bit 2:0, Adr 0x05, bit 7:4
Code	Factor
0x00	1.0
0x01	1.015
	6.25 ^{GFS} / ₁₂₄
0x7F	6.53

Table 12: Gain Factor Sine

S/C Offset Calibration

To calibrate the offset the reference source must first be selected using VOSSC. Two fixed voltages and two dependent sources are available for this purpose. The fixed voltage sources should be selected for external sensors which already provide stable, self-regulating signals.

For the operation of photosensors in optical encoders, iC-MG tracks changes in offset voltages via the signaldependent source VDC when used in conjunction with the controlled power supply output supplying the encoder LED (pin PWR). The VDC potential automatically tracks higher DC photocurrents. To this end intermediate potentials VDCS and VDCC must be adjusted to a minimal AC ripple using the selectable k factor (this calibration must be repeated when the gain setting is altered).

The feedback of pin voltage V(PWR) fulfills the same task as source VDC when MR bridge sensors are supplied by the controlled power supply output. In this instance the VDC sources do not need adjusting.

VOSSC	Adr 0x0E, bit 5:4
Code	Type of source
0x0	Feedback of PWR pin voltage: V(PWR)/20 for supply-dependent differential voltage signals for Wheatstone sensor bridges to measure VDDS
0x1, 0x2	Fixed reference of 500 mV, 250 mV for single-ended current or voltage signals for single-ended or differential stabilized signals (regulated sensor or waveform generator)
0x3	Self-tracking sources VDCS, VDCC (125250 mV) for differential current signals of photodiode arrays

Table 13: S/C-Channel Offset Reference Source

Adr 0x07, bit 4:0; Adr 0x06, bit 7
Adr 0x08, bit 6:1
$VDCi = (1 - k) \cdot VPi + k \cdot VNi$
<i>k</i> = 1/3
k = 0.3386
$k = 1/3 + 1/3 \cdot Code/63$
k = 0.5026 (center setting)
k = 2/3
Adjustment is required only if VOSSC = 0x3.

Table 14: S/C-Channel Intermediate Voltages

Rev D1, Page 14/22

The calibration range for the S/C offset is dependent on the selected VOSSC source and is set using ORS and ORC. Both sine and cosine signals are then calibrated using factors OFS and OFC. The calibration target is reached when the DC fraction of the differential signals PCHx versus NCHx is zero.

ORS	Adr 0x09, bit 0; Adr 0x08, bit 7
ORC	Adr 0x0A, bit 5:4
Code	Range
00	x1
01	x2
10	x6
11	x12

Table 15: S/C-Channel Offset Range

OFS	Adr 0xA, bit 3:0; Adr 0x9, bit 7:4		
OFC	Adr 0xC, bit 0; Adr 0xB, bit 7:1		
Code	Factor	Code	Factor
0x00	0	0x00	0
0x01	0.0079	0x01	-0.0079
0x7F	1	0xFF	-1

Table 16: S/C-Channel Offset Factors

S/C Phase Correction

If the phase shift between the sine and cosine signal deviates from the ideal 90° this can be compensated for using parameter PHSC. Following this the calibration of the amplitude compensation, intermediate potentials and offset voltages may have to be corrected.

PHSC	Adr 0xD, bit 2:0; Adr 0xC, bit 7:5		
Code	Correction angle	Code	Correction angle
0x00	+0°	0x20	- 0 °
0x01	+ 0.65 °	0x21	- 0.65 °
0x1F	+ 20.2 °	0x3F	- 20.2 °

Table 17: Phase Correction

fHaus

Rev D1, Page 15/22

Z SIGNAL PATH and CALIBRATION

The analog voltage signals needed to calibrate the zero signal are available in *Calibration Mode 1*. In addition it is possible to check the phase position of the PZERO/NZERO enable signal in *System Test Mode*.

Gain Settings

Parallel to the conditioning process for the S/C signals the zero signal gain is also set step by step:

1. The tracking of the sensor supply is shut down and the constant current source for the PWR output set to a suitable output current (register ADJ; current value close to the later operating point).

2. Coarse gain is selected so that differential signal amplitudes of ca. 1 Vpp are generated internally (signal PCHx vs. NCHx).

3. GFC then permits fine gain adjustment to 1 Vpp.

GRZ	Adr 0x11, bit 2:0		
Code	Range with RZ=0x9	Range with RZ ≠ 0x9	
0x0	0.5	2.0	
0x1	1.0	4.1	
0x2	1.3	5.3	
0x3	1.7	6.7	
0x4	2.2	8.7	
0x5	2.6	10.5	
0x6	3.3	13.2	
0x7	4.0	16.0	

Table 18: Z-Channel Gain Range

GFZ	Adr 0x11, bit 7:3
Code	Factor
0x00	1.00
0x01	1.06
	6.25 ^{GFZ} 31
0x1F	6.25

Table 19: Z-Channel Gain Factor

Offset Calibration

To calibrate the offset the source of supply must first be selected using VOSZ (see S/C Offset Calibration for further information). For the zero signal path the signal dependent source is VDCS.

VOSZ	Adr 0x13, bit 5:4
Code	Type of source
0x0	0.05 · V(PWR)
0x1	0.5 V
0x2	0.25 V
0x3	VDC= VDCS

Table 20: Z-Channel Offset Reference Source

ORZ	Adr 0x12, bit 1:0
Code	Range
00	x1
01	x2
10	x6
11	x12

Table 21: Z-Channel Offset Range

OFZ	Adr 0x12, bit 7:2		
Code	Factor	Code	Factor
0x00	0	0x20	0
0x01	0.032	0x21	-0.032
0x1F	1	0x3F	-1

Table 22: Z-Channel Offset Factor

Rev D1, Page 16/22

SIGNAL LEVEL CONTROL and SIGNAL MONITORING

Via the controlled sensor current source (pin PWR) iC-MG can keep the input signals for the internal sineto-digital converter constant regardless of temperature and aging effects by tracking the sensor supply.

Both the controller operating range and input signal amplitude for the controller are monitored and can be enabled for error messaging. A constant current source can be selected for the ACO output when setting the signal conditioning; the current range for the highside current source is adjusted using ADJ(6:5).

ADJ (6:5)	Adr 0x10, bit 5:4
Code	Function
00	5 mA range
01	10 mA range
10	25 mA range
11	50 mA range

Table 23: PWR Output Current Range (applies for con-
trol modes and constant current source)

ADJ (8:7)	Adr 0x10, bit 7:6	
Code	Function	
00	Control to sine/cosine square	
01	Control to sum of sine/cosine	
10	Constant current source	
11	Not permitted	

Table 24: PWR Output Operating Mode

Notice: Excessive input signals or internal signal clipping can interfere control operation, so that the preset operating point may not be reached (upon power up) or maintained (upon disturbances). Use Loss-of-Signal Error and PWR Control Out-of-Range Error (at max. limit) for monitoring and configure EMASKA accordingly.

ADJ (4:0)	Adr 0x10, bit 3:0; Adr 0x0F, bit 7		
Code	Square control ADJ(8:7) = 00		
0x00	Vpp() ca. 300 mV (60%)		
0x01	Vpp() ca. 305 mV (61 %)		
	$\approx 300 mV \frac{77}{77 - (1.25 * Code)}$		
0x19	Vpp() ca. 500 mV (98 %)		
0x1F	Vpp() ca. 600 mV (120 %)		

Table 25: Setpoint Square Control (internal sin/cos signal amplitude)

In operation with the active square control mode ADJ(4:0) sets the internal signal amplitudes according to the relation (PCHS-NCHS)² + (PCHC-NCHC)²; these should be set to 0.25 Vpk.

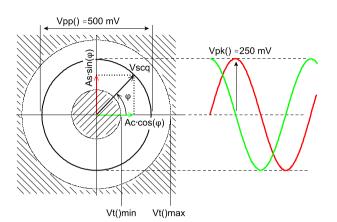


Figure 3: Internal signal monitoring and test signals in *Calibration 2* mode (example for ADJ(8:0) = 0x19).

Signal monitoring and limits			
ADJ (4:0)	Vt()min max	ADJ (4:0)	Vt()min max
0x00	120 mV390 mV	0x19	200 mV650 mV
0x01	122 mV397 mV		
		0x1F	240 mV780 mV

Table 26: Signal Monitoring (nominal values)

The signal monitoring limits are tracked according to ADJ (4:0) and fit for square control mode. When using sum control mode a different operating point can be required for which the monitoring limits may not be suitable. In this case signal monitoring should be disabled via the error mask (see EMASKA etc.).

ADJ (4:0)	Adr 0x10, bit 3:0; Adr 0x0F, bit 7	
Code	Sum control ADJ(8:7) = 01	
0x00	VDCS+VDCC ca. 245 mV	
0x01	VDCS+VDCC ca. 249mV	
	$\approx 245 m V rac{77}{77 - (1.25 * Code)}$	
0x1F	VDCS+VDCC ca. 490 mV	

Table 27: Setpoint Sum Control (DC value)

ADJ (4:0)	Adr 0x10, bit 3:0; Adr 0x0F, bit 7		
Code	Constant current source ADJ(8:7) = 10		
0x00	I(PWR) ca. 3.125% Isc(PWR)		
0x01	I(PWR) ca. 6.25% lsc(PWR)		
	$\approx 3.125\% * (Code + 1) * Isc(PWR)$		
0x1F	I(PWR) ca. 100% Isc(PWR)		
Notes	See Elec. Char. No. 602 for Isc(PWR)		

Table 28: Setpoint Current Source

Rev D1, Page 17/22

SINE-TO-DIGITAL CONVERSION

SELRES	Adr 0x1C, bit 6:0; Adr 0x1B, bit 7:0		
Code	Angle Steps (per period)	Interpolation Factor	Permiss. Input Frequency
0x00E0	4	x1	500 kHz
0x01B0	8	x2	500 kHz
0x0398	16	x4	200 kHz
0x0414	20	x5	200 kHz
0x078C	32	x8	125 kHz
0x090A	40	x10	100 kHz
0x0F86	64	x16	62.5 kHz
0x1305	80	x20	50 kHz
0x1804	100	x25	40 kHz
0x3102	200	x50	20 kHz

Table 29: Converter Resolution

SELHYS	Adr 0x1D, bit 3:0
Code	Function
0x0 to 0x1	Device test only
0x2	1 conversion increment (\approx 1.8 $^{\circ}$)
0x3 to 0xD	1.5 to 6.5 conversion increments (\approx 2.7°-11.7°)
0xE	1/2 angle step increment
0xF*	1 angle step increment
Notes	*) Permissible from 8 angle steps upwards.

Table 30: Converter Hysteresis

The programmable converter hysteresis is determined by SELHYS. It is set in multiples of the increment size and may have a maximum of 45° of the input signal period.

Rev D1, Page 18/22

OUTPUT SETTINGS

Configuration of Output Drivers

The output drivers can be used as push-pull, lowside or highside drivers. TRIHL(1:0) selects the mode of operation. In order to avoid steep edges during transmission via short cables the slew rate can be reduced using SSR (tolerances as given in Electrical Characteristics).

TRIHL	Adr 0x1E, bit 1:0
Code	Function
00	Push-pull operation
01	Highside driver mode (P channel open drain)
10	Lowside driver mode (N channel open drain)
11	Not permitted

Table 31: Output Drive Mode

SSR	Adr 0x1E, bit 3:2
Code	Function
01	Nominal value 25 ns
10	Nominal value 80 ns
Note	Entries 00 and 11 are not permitted

Table 32: Output Slew Rate

Minimum Phase Distance

The minimum phase distance for the A/B and Z output signals can be preselected using MTD(3:0). This setting limits the maximum possible output frequency for secure transmission to counters which are either unable to debounce noise spikes or only permit low input frequencies.

MTD	Adr 0x1D, bit 7:4
Code	Function
0x8	200 ns
0x9	400 ns
0xE	1.4 µs
0xF	1.6 µs
Note	Codes 0x0 to 0x7 are not permitted. All timing specifications are nominal values, see Elec. Char. No. 511 for tolerances.

Table 33: Minimum Phase Distance

When selecting the minimum phase distance the slew rate setting of the RS422 output drivers and the length of cable used must be taken into consideration.

Zero Signal Positioning

The output of the zero pulse, generated internally, is based on an enable from Z_{ln} which can be observed in System Test Mode and in ABZ Mode at pin NERR (via EMASKA= 0x010 and EMTD= 0x0). As the offset calibration of the zero signal alters the signal width the correct position and width of signal Z_{In} should be checked before the digital configuration parameters are determined.

The zero pulse output position can be selected via CFGZPOS(6:0); the cycle count begins with the sine zero crossing. No zero pulse is output for all values which are either greater than or equal to the interpolation factor.

CFGZPOS	Adr 0x1A, bit 7:0
Bit	Function
7	Enables the selection below
6:0	Count of A/B period releasing the Z output

Table 34: Zero Signal Positioning

0507	Adr 0.40 hit 2.0
CFGZ	Adr 0x19, bit 3:0
Code	Function
1ddd	Enables Z= 1 with A= 1, B= 1
d1dd	Enables Z= 1 with A= 1, B= 0
dd1d	Enables Z= 1 with A= 0, B= 0
ddd1	Enables Z= 1 with A= 0, B= 1
Notes	d = don't care; any combination is permissible.

Table 35: Zero Signal Logic

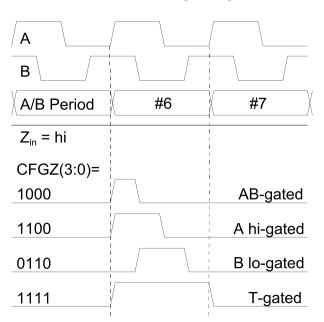


Figure 4: Zero Signal Gating Examples (example for CFGZPOS(7)=1, CFGZ-POS(6:0)=0x6)

Rev D1, Page 19/22

ERROR MONITORING and ALARM OUTPUT

iC-MG monitors input signals, the internal interpolator and the controlled sensor supply via which the input signal levels are stabilized. Should the sensor supply tracking reach control limits this can be interpreted as an end-of-life message, for example.

Two separate error masks determine whether error events cause the RS422 output drivers to shutdown (mask EMASKO) or are signaled as an alarm via the current-limited open drain I/O pin NERR (mask EMASKA).

The display logic and minimum indication time are settable; an internal pull-up current source can be switched in. At the same time pin NERR has an input function to trigger a new configuration run (see Serial **EEPROM** Interface).

EPH	Addr 0x15, bit 2		
Code	State on error State w/o error		
0*	active low	high impedance, with input function for a low-active system error;	
1	high impedance	active low	
Notes	*) Pin ERR is disabled during driver shutdown and cannot indicate errors in this case.		

Table 36: Alarm Output Logic

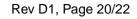
EMTD	Adr 0x15, bit 5:3		
Code	Indication time	Code	Indication time
0x0	0 ms	0x4	50 ms
0x1	12.5 ms	0x5	62.5 ms
0x2	25 ms	0x6	75 ms
0x3	37.5 ms	0x7	87.5 ms

Table 37: Minimal Alarm Indication Time

EPU	Adr 0x17, bit 2
Code	Function
0	No internal pull-up active
1	Internal 300 µA pull-up source active

Table 38: Alarm Output Pull-Up Enable

EMASKA	Adr 0x15, bit 0; Adr 0x14, bit 7:0			
Bit	Error event			
8	Temporal tracking error (out-of-sync: position output differs from actual angle, e.g. after cycling power)			
7	Loss of tracking due to excessive input frequency			
6*	Configuration error (SDA or SCL pin error, no acknowledge signal from EEPROM or invalid check sum)			
5	Excessive temperature warning			
4	Ungated index enable signal Zin			
3	PWR control out of range (at max. limit)			
2	PWR control out of range (at min. limit)			
1	Signal clipping (excessive input level)			
0	Loss of signal (poor differential level**, wrong s/c phase)			
Code	Function			
1	Enable: event changes state of pin ERR (if EMASKO does not disable the output function).			
0	Disable: event does not affect pin ERR.			
Notes	*) Pin ERR can not pull low on configuration error, use high-active error logic instead (EPH = 1); **) Also due to excessive input signals or internal signal clipping.			


Driver Shutdown

Driver shutdown is a precaution to protect iC-MG. Pin PWR is set to the 5 mA range, the line drivers and pin ERR are tristate during driver shutdown.

Driver shutdown due to overheating or due to a configuration error is always enabled. Configuration errors are SDA or SCL pin error, no acknowledge signal from EEPROM or invalid checksum. EMASKO is used program driver shutdown due to other error events.

EMASKO	Adr 0x17, bit 0; Adr 0x16, bit 7:0			
Bit	Error event			
8	Temporal tracking error (out-of-sync: position output differs from actual angle, e.g. after cycling power)			
7	Loss of tracking due to excessive input frequency			
6	(Configuration error, always enabled)			
5	Excessive temperature warning			
4	System error: I/O pin NERR pulled to low by an external error signal (only permitted with EPH = 0)			
3	PWR control out of range (at max. limit)			
2	PWR control out of range (at min. limit)			
1	Signal clipping (excessive input level)			
0	Loss of signal (poor differential level**, wrong s/c phase)			
Code	Function			
1	Enable: event causes a driver shutdown			
0	Disable: output drivers remain active			
Notes	**) Also due to excessive input signals or internal signal clipping.			

Table 40: Error Event Mask for Driver Shutdown

Haus

APPLICATION NOTES

Circuit example for 1 Vpp sensors

Figure 5 introduces the principle input wiring to 1 Vpp sensors. Here, resistor RS1 provides line termination, and serial resistors RS2 and RS4 are providing ESD and overvoltage protection together with iC-MG's internal clamping circuit.

Resistor RS3 reduces the incoming signal levels to one third, so that iC-MG can be operated at a total gain of x3. The filter capacitors can be adapted, either depending on the sensor's noise level, or in accordance with the desired maximum input frequency.

Using the analog ground GNDS for the filter circuit can be recommend; the cable shield should be linked to the external ground of the IC's power supply.

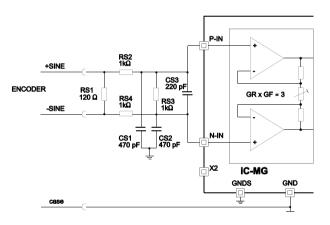


Figure 5: Principle input wiring for 1 Vpp sensors.

CS1	CS2	CS3	fc -3 dB
2.2 nF	2.2 nF	470 pF	ca. 115 kHz
470 pF	470 pF	470 pF	ca. 170 kHz
470 pF	470 pF	220 pF	ca. 180 kHz
220 pF	220 pF	—	ca. 205 kHz
_	—	—	ca. 210 kHz
Notes	GRSC = 2, GFS = 1.5, GFC = 1.5		

(iC)

Table 41:	Filter	Cut-off	Frequency	(-3 dB)
-----------	--------	---------	-----------	---------

In-circuit programming of the EEPROM

To avoid bus conflicts during in-circuit programming of the EEPROM using external programming tools, iC-MG should be supplied first and must have finished its I2C master communication.

Alternatively, access to the EEPROM is unhindered as long as iC-MG's supply voltage remains below turnoff threshold VDDoff. Programming of a 2.5V-capable EEPROM can thus be possible. As iC-MG can be back biased by I2C pull-up resistors, its supply voltage may not exceed turn-on threshold VDDon.

8-Bit Sin/Cos INTERPOLATION IC WITH RS422 DRIVER

REVISION HISTORY

Rel	Rel.Date	Chapter	Modification	Page
C1	08-06-12			
		1	Γ	
Rel	Rel.Date	Chapter	Modification	Page
	14-08-11	FEATURES	Input frequency of up to 500 kHz at x1/x2, x8 and x16 supplemented Extended temperature range of -40 to 100° C max.	1
		DESCRIPTION	Text updated	2
		PACKAGING INFORMATION	Pin functions updated for 100 nF bypass at VDDS vs. GNDS	2
		ELECTRICAL CHARACTERISTICS	Item 001: conditions extended, Item 007 (separated from 008): min/max values Item 010 (former C03): conditions and max. value Item 120: extended for x1, x2 Item C01: moved from 003, Item C04: new entry Item D09: correction of typ. and max. values Item E02: correction of hysteresis value	46
		REGISTER MAP	Mandatory address contents revised for Addr 0x02 (bit 7, 5), 0x0F (bit 4, 3), 0x15 (bit 1), 0x17 (bit 1); (in accordance to GUI update)	8
		SERIAL EEPROM INTERFACE	Revised layout with additional headlines, description on suitable EEPROMs updated, notes supplemented, section Triggering Reboot supplemented	10
		OPERATING MODES	Tab. 5, Op. Modes: correction of footnote re. SELRES settings	11
		BIAS CURRENT SOURCE CALIBRATION	Description revised, note added	11
		INPUT CONFIGURATIONS	Layout revised, contents of Tab. 8 and 9 revised;	12
		S/C SIGNAL PATH and CALIBRATION	Fig. 2 added for description of 1 Vpp signal, Tab. 13, 14: contents revised, Tab. 15, ORS and ORC: range corrected	13, 14
		Z SIGNAL PATH and CALIBRATION	Tab. 21, ORZ: range corrected	15
		SIGNAL LEVEL CONTROL and SIGNAL MONITORING	Chapter revised: text and tables, Fig. 3 supplemented;	16
		SINE-TO-DIGITAL CONVERSION	Tab. 28, SELRES: 500 kHz at x1/x2, and x32 and x64 as new entries Tab. 29: Description revised for 0xE and 0xF	17
		OUTPUT SETTINGS	Tab. 34, CFGZ: extended settings, Fig. 4 updated for extended settings	18
		ERROR MONITORING and ALARM OUTPUT	Layout revised, Tab. 38 and 39: contents updated, description of driver shutdown supplemented	19
		APPLICATION NOTES	New chapter supplemented	20

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

ic-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

8-Bit Sin/Cos INTERPOLATION IC WITH RS422 DRIVER

ORDERING INFORMATION

Туре	Package	Order Designation
iC-MG Evaluation Board	TSSOP20	iC-MG TSSOP20 iC-MG EVAL MG1D

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY

Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners