## SPECIFICATION FOR COTCO LED LAMP

Document No: SPE/LD-300CPG2-C5-MT

Model No: LD-300CPG2-C5-MT

Rev. No: 03

Date: 2006-08-29

# Description:

3 x 3mm, QFN Type, High Power Green LED For Illumination, Water Clear Compound Encapsulated.

This specification is only for MT

Dice Material: InGaN

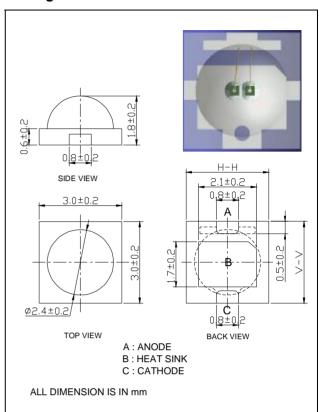








| Document No. | SPE/LD-300CPG2-C5-MT |
|--------------|----------------------|
| Rev. No.     | 03                   |


#### **Features**

- High luminous flux output for illumination
- Exposed pad design for excellent heat transfer
- Designed for high current operation
- Reflow soldering applicable

### Absolute Maximum Ratings at Ta = 25°C (on metal core PCB)\*

| Items                  | Symbol            | Absolute maximum Rating | Unit |
|------------------------|-------------------|-------------------------|------|
| Forward Current        | I <sub>F</sub>    | 100                     | mA   |
| Peak Forward Current** | I <sub>FP</sub>   | 150                     | mA   |
| Reverse Voltage        | V <sub>R</sub>    | 5                       | V    |
| Power Dissipation      | P <sub>D</sub>    | 0.48                    | W    |
| Operation Temperature  | $T_{opr}$         | -40 ~ +85               | °C   |
| Storage Temperature    | $T_{stg}$         | -40 ~ +85               | °C   |
| Junction Temperature   | Tj                | +110                    | °C   |
| Junction-to-Ambient*** | $\theta_{ja}$     | 135                     | °C/W |
| Junction-to-Case***    | $\theta_{\sf jc}$ | 70                      | °C/W |

### **Package Outline**



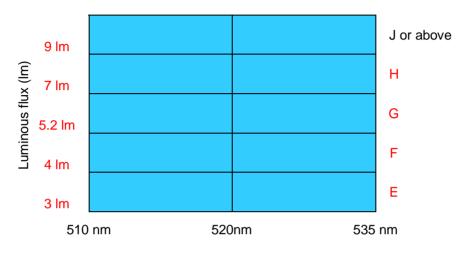
<sup>\*</sup>Metal core PCB defines as good heat transmission substrate (thickness of 1.7mm Al-based PCB in 12x12mm,  $\theta_{lc}$  <50°C/W could do)

#### Typical Electrical & Optical Characteristics at Ta = 25°C (on metal core PCB)\*

| <b>7</b> From = 100 mm or open or op |                |                        |      |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|------|------|------|------|
| Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol         | Condition              | Min. | Тур. | Max. | Unit |
| Forward Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{F}$        | $I_F = 100 \text{mA}$  |      | 4.0  | 4.8  | V    |
| Reverse Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I <sub>R</sub> | $V_R = 5V$             |      |      | 10   | μΑ   |
| Luminous Flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lumen          | I <sub>F</sub> = 100mA | 3    | 5    |      | lm   |
| Dominant Wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\lambda_{D}$  | I <sub>F</sub> =100mA  | 510  | 525  | 535  | nm   |
| 50% Power Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 θ½ H-H       | I <sub>F</sub> = 100mA |      | 125  |      | deg  |
| 30 % Fower Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 θ½ V-V       | I <sub>F</sub> = 100mA |      | 115  |      | deg  |



#### Ranks Combination ( $I_F = 100 \text{mA}$ )


| Document No. | SPE/LD-300CPG2-C5-MT |
|--------------|----------------------|
| Rev. No.     | 03                   |

Lamps are sorted to Luminous flux –lm,  $V_F$  & Dominant Wavelength –  $\lambda_D$  bins shown.

Orders for LD-300CPG2-C5-MT may be filled with any or all bins contained as below.

All Luminous flux–lm,  $V_F$  & Dominant Wavelength  $-\lambda_D$  values shown and specified are at  $I_F$ =100mA.

## \*<u>E+</u>



Dominant Wavelength (  $\lambda$  D)

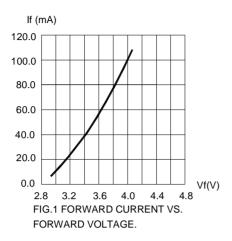
### Forward Voltage (V<sub>F</sub>)

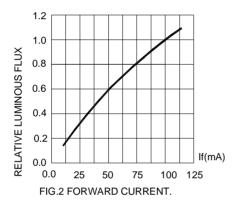
| Rank        | V5a      | V5b      | V6a      | V6b      | V7a      | V7b      | V8a      | V8b      |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Voltage (V) | 3.2-3.4V | 3.4-3.6V | 3.6-3.8V | 3.8-4.0V | 4.0-4.2V | 4.2-4.4V | 4.4-4.6V | 4.6-4.8V |

### Wavelenth Voltage (Wd)

| Rank            | X5        | X6        | X7        | X8        | X9        |
|-----------------|-----------|-----------|-----------|-----------|-----------|
| Wavelength (nm) | 510-515nm | 515-520nm | 520-525nm | 525-530nm | 530-535nm |

#### **Important Notes:**


- 1) All ranks will be included per delivery; rank ratio will be based on Dices distribution.
- 2) Pb content < 1000PPM.
- 3) Tolerance of measurement of luminous flux is ±10%
- 4) Tolerance of measurement of dominant wavelength is ±1nm.
- 5) Tolerance of measurement of Vf is ±0.1 V.
- 6) Packaging methods are available for selection, please refer to PACKAGING STANDARD.
- 7) Please refer to LED LAMP RELIABILITY TEST STANDARD for reliability test conditions.
- 8) Please refer to APPLICATION NOTES for Application Notes.


<sup>\*</sup>E+ indicates Luminous Flux is at E bin or above.



| Document No. | SPE/LD-300CPG2-C5-MT |
|--------------|----------------------|
| Rev. No.     | 03                   |

### **Graphs**





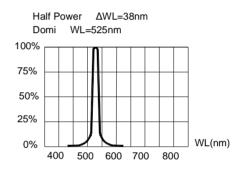



FIG.3 RELATIVE LUMINOUS FLUX VS. WAVELENGTH.

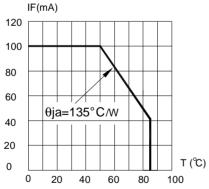



FIG.4 MAXIMUM FORWARD DC CURRENT VS TEMPERATURE. DERATING BASED ON Tjmax=110  $^{\circ}\!\mathrm{C}$ 

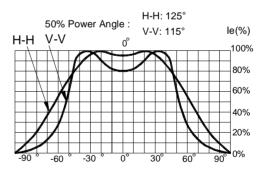



FIG.5 FAR FIELD PATTERN

| Items       | Signatures | Date       |  |
|-------------|------------|------------|--|
| Prepared by | WangFJ     | 2006-08-29 |  |
| Checked by  | WangXM     | 2006-08-29 |  |
| Approved by | David      | 2006-08-29 |  |
| FCN# FCN20  |            | 060297     |  |

|        | Revision History |                                                                           |  |  |  |  |
|--------|------------------|---------------------------------------------------------------------------|--|--|--|--|
| Rev.No | Date             | Change Description                                                        |  |  |  |  |
| 02     | 2006-08-11       | Changed $\lambda_D$ MAX from 530 to 535 and added 530-535 $\lambda_D$ bin |  |  |  |  |
| 03     | 2006-08-29       | Change lumen bin range and rank from B,C,D to E,F,G,H                     |  |  |  |  |
|        |                  |                                                                           |  |  |  |  |

Data is subject to change without prior notice.

Copyright@2002 Cotco International Ltd.