The EL5221 is a dual, low power, high voltage rail-to-rail input-output buffer. Operating on supplies ranging from 5 V to 15 V , while consuming only $500 \mu \mathrm{~A}$ per channel, the EL5221 has a bandwidth of $12 \mathrm{MHz}(-3 \mathrm{~dB})$. The EL5221 also provides rail-to-rail input and output ability, giving the maximum dynamic range at any supply voltage.

The EL5221 also features fast slewing and settling times, as well as a high output drive capability of 30 mA (sink and source). These features make the EL5221 ideal for use as voltage reference buffers in Thin Film Transistor Liquid Crystal Displays (TFT-LCD). Other applications include battery power, portable devices, and anywhere low power consumption is important.

The EL5221 is available in space-saving 6 Ld SOT-23 and 8 Ld MSOP packages and operates over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Ordering Information

PART NUMBER	PART MARKING	PACKAGE	PKG. DWG. \#
EL5221CW-T7*	M	6 Ld SOT-23	MDP0038
EL5221CW-T7A*	M	6 Ld SOT-23	MDP0038
EL5221CWZ-T7* (Note)	BBEA	6 Ld SOT-23 (Pb-free)	MDP0038
EL5221CWZ-T7A* (Note)	BBEA	6 Ld SOT-23 (Pb-free)	MDP0038
EL5221CY	K	8 Ld MSOP	MDP0043
EL5221CY-T7*	K	8 Ld MSOP	MDP0043
EL5221CY-T13*	K	8 Ld MSOP	MDP0043
EL5221CYZ (Note)	BAAAJ	8 Ld MSOP (Pb-free)	MDP0043
EL5221CYZ-T7* (Note)	BAAAJ	8 Ld MSOP (Pb-free)	MDP0043
EL5221CYZ-T13* (Note)	BAAAJ	8 Ld MSOP (Pb-free)	MDP0043

*Please refer to TB347 for details on reel specifications.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Features

- $12 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth
- Unity gain buffer
- Supply voltage $=4.5 \mathrm{~V}$ to 16.5 V
- Low supply current (per buffer) $=500 \mu \mathrm{~A}$
- High slew rate $=10 \mathrm{~V} / \mu \mathrm{s}$
- Rail-to-rail operation
- Pb-Free plus anneal available (RoHS compliant)

Applications

- TFT-LCD drive circuits
- Electronics notebooks
- Electronics games
- Personal communication devices
- Personal Digital Assistants (PDA)
- Portable instrumentation
- Wireless LANs
- Office automation
- Active filters
- ADC/DAC buffer

Pinouts

EL5221
(6 LD SOT-23) TOP VIEW

EL5221 (8 LD MSOP) TOP VIEW

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	
Supply Voltage between $\mathrm{V}_{\mathrm{S}^{+}}$and $\mathrm{V}_{\mathrm{S}^{-}}$.	+18V
Input Voltage	$\mathrm{V}_{\mathrm{S}^{-}}-0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{+}}+0.5 \mathrm{~V}$
Maximum Continuous Output Current .	30 mA
ESD Voltage	2 kV

Thermal Information

Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature . $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation . See Curves
Maximum Die Temperature . +125²C
Pb-free reflow profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

Electrical Specifications $\quad V_{S^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{S^{-}}=-5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ to $0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	$\begin{gathered} \text { MIN } \\ \text { (Note 3) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ (\text { Note 3) } \end{gathered}$	UNIT
INPUT CHARACTERISTICS						
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		2	12	mV
TCV ${ }_{\text {OS }}$	Average Offset Voltage Drift	(Note 1)		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		2	50	nA
RIN	Input Impedance			1		$G \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.35		pF
A_{V}	Voltage Gain	$-4.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4.5 \mathrm{~V}$	0.995		1.005	V/V
OUTPUT CHARACTERISTICS						
$\mathrm{V}_{\text {OL }}$	Output Swing Low	$\mathrm{L}_{\mathrm{L}}=-5 \mathrm{~mA}$		-4.92	-4.85	V
V_{OH}	Output Swing High	$\mathrm{L}_{\mathrm{L}}=5 \mathrm{~mA}$	4.85	4.92		V
Isc	Short Circuit Current	Short to GND		± 120		mA

POWER SUPPLY PERFORMANCE

PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\text {S }}$ is moved from $\pm 2.25 \mathrm{~V}$ to $\pm 7.75 \mathrm{~V}$	60	80		dB
IS	Supply Current (Per Buffer)	No load		500	750	$\mu \mathrm{~A}$

DYNAMIC PERFORMANCE

| SR | Slew Rate (Note 2) | $-4.0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4.0 \mathrm{~V}, 20 \%$ to 80% | 7 | 10 | $\mathrm{~V} / \mu \mathrm{s}$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| ts | Settling to $+0.1 \%$ | $\mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}$ step | | 500 | ns |
| BW | -3dB Bandwidth | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ | | 12 | MHz |
| CS | Channel Separation | $\mathrm{f}=5 \mathrm{MHz}$ | | 75 | dB |

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ to $2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	MIN (NOTE 3)	TYP	MAX (NOTE 3)	UNIT
INPUT CHARACTERISTICS						
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		2	10	mV
TCV ${ }_{\text {OS }}$	Average Offset Voltage Drift	(Note 1)		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		2	50	nA
R_{IN}	Input Impedance			1		$\mathrm{G} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.35		pF
A_{V}	Voltage Gain	$0.5 \leq \mathrm{V}_{\text {OUT }} \leq 4.5 \mathrm{~V}$	0.995		1.005	V/V
OUTPUT CHARACTERISTICS						
V_{OL}	Output Swing Low	$\mathrm{L}_{\mathrm{L}}=-5 \mathrm{~mA}$		80	150	mV
V_{OH}	Output Swing High	$\mathrm{L}_{\mathrm{L}}=5 \mathrm{~mA}$	4.85	4.92		V
ISC	Short Circuit Current	Short to GND		± 120		mA
POWER SUPPLY PERFORMANCE						
PSRR	Power Supply Rejection Ratio	V_{S} is moved from 4.5 V to 15.5 V	60	80		dB
Is	Supply Current (Per Buffer)	No Load		500	750	$\mu \mathrm{A}$
DYNAMIC PERFORMANCE						
SR	Slew Rate (Note 2)	$1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4 \mathrm{~V}, 20 \%$ to 80%	7	10		V/us
ts	Settling to $+0.1 \%$	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$ Step		500		ns
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		12		MHz
CS	Channel Separation	$\mathrm{f}=5 \mathrm{MHz}$		75		dB

Electrical Specifications $\quad V_{S^{+}}=+15 \mathrm{~V}, \mathrm{~V}_{S^{-}}=0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ to $7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	MIN (NOTE 3)	TYP	MAX (NOTE 3)	UNIT
INPUT CHARACTERISTICS						
V OS	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=7.5 \mathrm{~V}$		2	14	mV
TCV ${ }_{\text {OS }}$	Average Offset Voltage Drift	(Note 1)		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=7.5 \mathrm{~V}$		2	50	nA
R_{IN}	Input Impedance			1		$\mathrm{G} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.35		pF
A_{V}	Voltage Gain	$0.5 \leq \mathrm{V}_{\text {OUT }} \leq 14.5 \mathrm{~V}$	0.995		1.005	V/V

OUTPUT CHARACTERISTICS

V_{OL}	Output Swing Low	$\mathrm{I}_{\mathrm{L}}=-5 \mathrm{~mA}$		80	150	mV
V_{OH}	Output Swing High	$\mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}$	14.85	14.92		V
Isc	Short Circuit Current	Short to GND		± 120		mA
POWER SUPPLY PERFORMANCE						
PSRR	Power Supply Rejection Ratio	V_{S} is moved from 4.5 V to 15.5 V	60	80		dB
Is	Supply Current (Per Buffer)	No Load		500	750	$\mu \mathrm{A}$
DYNAMIC PERFORMANCE						
SR	Slew Rate (Note 2)	$1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 14 \mathrm{~V}, 20 \%$ to 80%	7	10		V/ $/ \mathrm{s}$
ts	Settling to $+0.1 \%$	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$ Step		500		ns
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		12		MHz
CS	Channel Separation	$\mathrm{f}=5 \mathrm{MHz}$		75		dB

NOTES:

1. Measured over the operating temperature range.
2. Slew rate is measured on rising and falling edges.
3. Parts are 100% tested at $+25^{\circ} \mathrm{C}$. Over-temperature limits established by characterization and are not production tested.

Typical Performance Curves

Typical Performance Curves (Continued)

Maximum Output Swing vs Frequency

Channel Separation vs Frequency Response

Typical Performance Curves (Continued)

Large Signal Transient Response

Small Signal Transient Response

Pin Descriptions

6 LD SOT-23	8 LD MSOP	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
1	3	VINA	Buffer A Input	
2	4	VS-	Negative Supply Voltage	
3	5	VINB	Buffer B Input	(Reference Circuit 1)
4	7	VOUTB	Buffer B Output	Circuit 2
5	8	VS+	Positive Supply Voltage	
6	1	VOUTA	Buffer A Output	(Reference Circuit 2)

Applications Information

Product Description

The EL5221 unity gain buffer is fabricated using a high voltage CMOS process. It exhibits rail-to-rail input and output capability and has low power consumption ($500 \mu \mathrm{~A}$ per buffer). These features make the EL5221 ideal for a wide range of general-purpose applications. When driving a load of $10 \mathrm{k} \Omega$ and 12 pF , the EL5221 has a -3 dB bandwidth of 12 MHz and exhibits $10 \mathrm{~V} / \mu$ s slew rate.

Operating Voltage, Input, and Output

The EL5221 is specified with a single nominal supply voltage from 5 V to 15 V or a split supply with its total range from 5 V to 15 V . Correct operation is guaranteed for a supply range of 4.5 V to 16.5 V . Most EL5221 specifications are stable over both the full supply range and operating temperatures of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Parameter variations with operating voltage and/or temperature are shown in the typical performance curves.

The output swings of the EL5221 typically extend to within 80 mV of positive and negative supply rails with load currents of 5 mA . Decreasing load currents will extend the output voltage range even closer to the supply rails. Figure 1 shows the input and output waveforms for the device. Operation is from $\pm 5 \mathrm{~V}$ supply with a $10 \mathrm{k} \Omega$ load connected to GND. The input is a $10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ sinusoid. The output voltage is approximately $9.985 \mathrm{~V}_{\text {P-P }}$.

FIGURE 1. OPERATION WITH RAIL-TO-RAIL INPUT AND OUTPUT

Short Circuit Current Limit

The EL5221 will limit the short circuit current to $\pm 120 \mathrm{~mA}$ if the output is directly shorted to the positive or the negative supply. If an output is shorted indefinitely, the power dissipation could easily increase such that the device may be damaged. Maximum reliability is maintained if the output continuous current never exceeds $\pm 30 \mathrm{~mA}$. This limit is set by the design of the internal metal interconnects.

Output Phase Reversal

The EL5221 is immune to phase reversal as long as the input voltage is limited from $\mathrm{V}_{\mathrm{S}^{-}}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}^{+}}+0.5 \mathrm{~V}$. Figure 2 shows a photo of the output of the device with the input voltage driven beyond the supply rails. Although the device's output will not change phase, the input's overvoltage should be avoided. If an input voltage exceeds supply voltage by

Page 9 of 13
more than 0.6 V , electrostatic protection diodes placed in the input stage of the device begin to conduct and overvoltage damage could occur.

FIGURE 2. OPERATION WITH BEYOND-THE-RAILS INPUT

Power Dissipation

With the high-output drive capability of the EL5221 buffer, it is possible to exceed the $+125^{\circ} \mathrm{C}$ "absolute-maximum junction temperature" under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for the application to determine if load conditions need to be modified for the buffer to remain in the safe operating area.

The maximum power dissipation allowed in a package is determined according to:
$P_{\text {DMAX }}=\frac{T_{\text {JMAX }}-T_{\text {AMAX }}}{\Theta_{J A}}$
where:
$\mathrm{T}_{\mathrm{JMAX}}=$ Maximum junction temperature
$\mathrm{T}_{\text {AMAX }}=$ Maximum ambient temperature
$\Theta_{\mathrm{JA}}=$ Thermal resistance of the Package
$P_{\text {DMAX }}=$ Maximum power dissipation in the package
The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the loads, or:

$$
\begin{equation*}
\mathrm{P}_{\text {DMAX }}=\Sigma \mathrm{i}\left[\mathrm{~V}_{\mathrm{S}} \times \mathrm{I}_{\text {SMAX }}+\left(\mathrm{V}_{\mathrm{S}^{+}}-\mathrm{V}_{\mathrm{OUT}} \mathrm{i}\right) \times \mathrm{I}_{\text {LOAD }} \mathrm{i}\right] \tag{EQ.2}
\end{equation*}
$$

when sourcing, and:

$$
\begin{equation*}
\mathrm{P}_{\text {DMAX }}=\Sigma i\left[\mathrm{~V}_{\mathrm{S}} \times \mathrm{I}_{\text {SMAX }}+\left(\mathrm{V}_{\text {OUT }}{ }^{\left.\left.\mathrm{i}-\mathrm{V}_{\mathrm{S}^{-}}\right) \times \mathrm{I}_{\text {LOAD }} \mathrm{i}\right]}\right.\right. \tag{EQ.3}
\end{equation*}
$$

when sinking.
where:

$$
\begin{aligned}
& \text { i = } 1 \text { to } 2 \text { for dual buffer } \\
& \mathrm{V}_{\mathrm{S}}=\text { Total supply voltage } \\
& \text { ISMAX } \text { = Maximum supply current per channel } \\
& \text { V OUT }^{\mathrm{i}}=\text { Maximum output voltage of the application } \\
& \text { ILOAD }^{\mathrm{I}} \text { = Load current }
\end{aligned}
$$

If we set the two PDMAX equations equal to each other, we can solve for R ROADi to avoid device overheat. Figure 3 and Figure 4 provide a convenient way to see if the device will overheat. The maximum safe power dissipation can be found graphically, based on the package type and the ambient temperature. By using the previous equation, it is a simple matter to see if PDMAX exceeds the device's power derating curves. To ensure proper operation, it is important to observe the recommended derating curves shown in Figure 3 and Figure 4.

FIGURE 3. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 4. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Unused Buffers

It is recommended that any unused buffer have the input tied to the ground plane.

Driving Capacitive Loads

The EL5221 can drive a wide range of capacitive loads. As load capacitance increases, however, the -3dB bandwidth of the device will decrease and the peaking increase. The buffers drive 10 pF loads in parallel with $10 \mathrm{k} \Omega$ with just 1.5 dB of peaking, and 100 pF with 6.4 dB of peaking. If less peaking is desired in these applications, a small series resistor (usually between 5Ω and 50Ω) can be placed in series with the output. However, this will obviously reduce the gain slightly. Another method of reducing peaking is to add a "snubber" circuit at the output. A snubber is a shunt load consisting of a resistor in series with a capacitor. Values of 150Ω and 10 nF are typical. The advantage of a snubber is that it does not draw any DC load current or reduce the gain

Power Supply Bypassing and Printed Circuit Board Layout

The EL5221 can provide gain at high frequency. As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Ground plane construction is highly recommended, lead lengths should be as short as possible, and the power supply pins must be well bypassed to reduce the risk of oscillation. For normal single supply operation, where the $\mathrm{V}_{\mathrm{S}^{-}}$pin is connected to ground, a $0.1 \mu \mathrm{~F}$ ceramic capacitor should be placed from $\mathrm{V}_{\mathrm{S}^{+}}$to pin to V_{S} - pin. A $4.7 \mu \mathrm{~F}$ tantalum capacitor should then be connected in parallel, placed in the region of the buffer. One $4.7 \mu \mathrm{~F}$ capacitor may be used for multiple devices. This same capacitor combination should be placed at each supply pin to ground if split supplies are to be used.

SOT-23 Package Family

MDP0038

SOT-23 PACKAGE FAMILY

SYMBOL	MILLIMETERS		TOLERANCE
	SOT23-5	SOT23-6	
A	1.45	1.45	± 0.05
A1	0.10	0.10	± 0.15
A2	1.14	1.14	± 0.05
b	0.40	0.40	± 0.06
c	0.14	0.14	Basic
D	2.90	2.90	Basic
E	2.80	2.80	Basic
E1	1.60	1.60	Basic
e	0.95	0.95	Basic
e1	1.90	1.90	± 0.10
L	0.45	0.45	Reference
L1	0.60	0.60	Reference
N	5	6	Rev. F

NOTES:

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
3. This dimension is measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Index area - Pin \#1 I.D. will be located within the indicated zone (SOT23-6 only).
6. SOT23-5 version has no center lead (shown as a dashed line).

Mini SO Package Family (MSOP)

MDP0043
MINI SO PACKAGE FAMILY

SYMBOL	MILLIMETERS			
	MSOP8	MSOP10	TOLERANCE	
A	1.10	1.10	Max.	-
A1	0.10	0.10	± 0.05	-
A2	0.86	0.86	± 0.09	-
b	0.33	0.23	$+0.07 /-0.08$	-
c	0.18	0.18	± 0.05	-
D	3.00	3.00	± 0.10	1,3
E	4.90	4.90	± 0.15	-
E1	3.00	3.00	± 0.10	2,3
e	0.65	0.50	Basic	-
L	0.55	0.55	± 0.15	-
L1	0.95	0.95	Basic	-
N	8	10	Reference	-

Rev. D 2/07
NOTES:

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
3. Dimensions " D " and " $E 1$ " are measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
© Copyright Intersil Americas LLC 2002-2007. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing IS09001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

