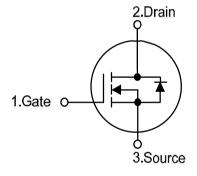
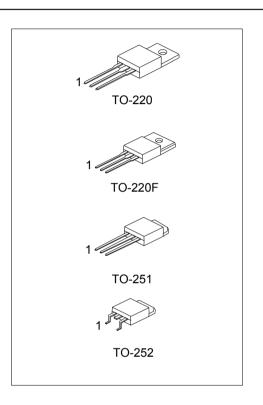


6.2A 600V N-CHANNEL POWER MOSFET


DESCRIPTION


The NJ6**N60** is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in switching power supplies and adaptors.

■ FEATURES

- * V_{DS} = 600V
- * $I_D = 6.2A$
- * RDS(ON) = 1.5 ohm@VGS = 10V
- * Ultra low gate charge (typical 20 nC)
- * Low reverse transfer Capacitance (CRSS = typical 10pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

SYMBOL

■ ORDERING INFORMATION

Ordering Number	Package	Pin Assignment			Dooking	
		1	2	3	Packing	
NJ6N60-LI	TO-220	G	D	S	Tape Box	
NJ6N60-BL	TO-220	G	D	S	Bulk	
NJ6N60F-LI	TO-220F	G	D	S	Tube	
NJ6N60A-LI	TO-251	G	D	S	Tube	
NJ6N60D-TR	TO-252	G	D	S	Tape Ree	
NJ6N60D-LI	TO-252	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	600	V	
Gate-Source Voltage		V _{GSS}	±30	V	
Avalanche Current (Note 2)		I _{AR}	6.2	Α	
Continuous Drain Current		I _D	6.2	Α	
Pulsed Drain Current (Note 2)		I _{DM}	24.8	Α	
Avalanche Energy	Single Pulsed	6N60	F	440	mJ
	(Note 3)	6N60-P	E _{AS}	260	mJ
	Repetitive (Note 2)		E _{AR}	13	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	ns	
Power Dissipation	TO-220 TO-220F			125	W
				40	W
	TO-251		P _D	55	W
	TO-252			55	W
Junction Temperature		TJ	+150	°C	
Operating Temperature		T _{OPR}	-55 ~ +150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

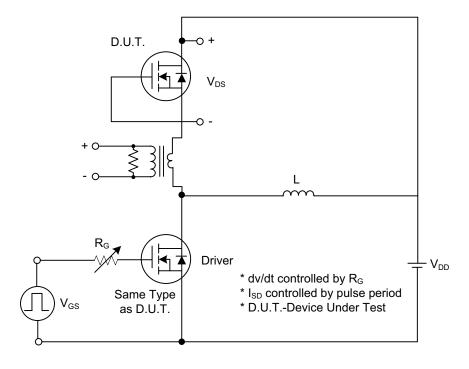
Notes 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

: Absolute maximum ratings are stress ratings only and functional device operation is not implied.

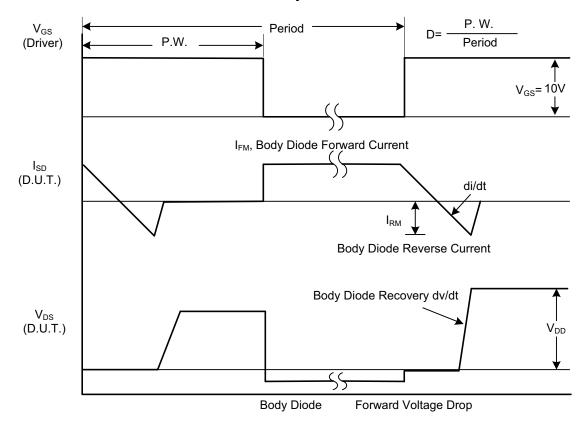
- 2. Repetitive Rating : Pulse width limited by T_{J}
- 3. L = 14mH, I_{AS} = 6A, V_{DD} = 90V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 6.2A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT	
Junction to Ambient	TO-220		62.5	°C/W	
	TO-220F	θ_{JA}	62.5		
	TO-251/TO-252		110		
Junction to Case	TO-220	θ _{JC}	1.0	°C/W	
	TO-220F		3.2		
	TO-251		2.27		
	TO-252		2.27		

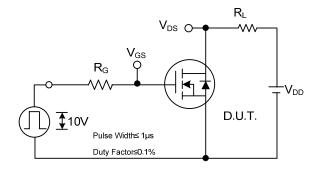

■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

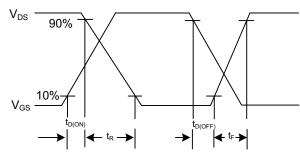
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	600			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 600V, V _{GS} = 0V			10	μΑ
Gate- Source Leakage Current	Forward	I _{GSS}	$V_{GS} = 30V, V_{DS} = 0V$			100	nA
	Reverse		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA
Breakdown Voltage Temperature Coefficient		△BV _{DSS} /△T _J	I _D =250μA, Referenced to 25°C		0.53		V/°C
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-State	6N60	Б	V _{GS} = 10V, I _D = 3.1A		1.0	1.5	
Resistance	6N60-P	R _{DS(ON)}			1.0	1.5	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance	Capacitance C _{ISS}		V 05V V 0V		770	1000	pF
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0 MHz		95	120	pF
Reverse Transfer Capacitance	Reverse Transfer Capacitance		11= 1.0 MH2		10	13	pF
SWITCHING CHARACTERISTICS	3						
Turn-On Delay Time		t _{D(ON)}			20	50	ns
Turn-On Rise Time	6N60				70	150	ns
	6N60-P	t _R	V_{DD} =300V, I_{D} =6.2A,		60	100	ns
Turn-Off Delay Time		t _{D(OFF)}	R _G =25Ω (Note 1, 2)		40	90	ns
Turn-Off Fall Time	6N60				80	100	ns
	6N60-P	t _F			70	100	ns
Total Gate Charge		Q_{G}	V -480V I -6 2A		20	25	nC
Gate-Source Charge		Q _{GS}	V _{DS} =480V, I _D =6.2A, V _{GS} =10 V (Note 1, 2)		4.9		nC
Gate-Drain Charge		Q_{GD}	VGS-10 V (Note 1, 2)		9.4		nC
DRAIN-SOURCE DIODE CHARA	CTERISTIC	CS AND MAXII	MUM RATINGS				
Drain-Source Diode Forward Voltage		V _{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 6.2 \text{ A}$			1.4	V
Maximum Continuous Drain-Source Diode		Is				6.2	A
Forward Current						0.2	_^_
Maximum Pulsed Drain-Source Diode		I _{SM}				24.8	A
Forward Current						27.0	
Reverse Recovery Time		t _{rr}	$V_{GS} = 0 \text{ V}, I_S = 6.2 \text{ A},$		290		ns
Reverse Recovery Charge		Q_{RR}	dI _F /dt = 100 A/μs (Note 1)		2.35		μC


Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

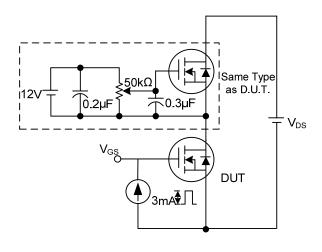
^{2.} Essentially independent of operating temperature

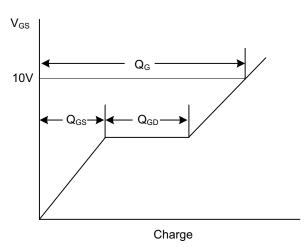
■ TEST CIRCUITS AND WAVEFORMS



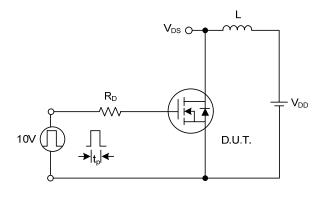

Peak Diode Recovery dv/dt Test Circuit

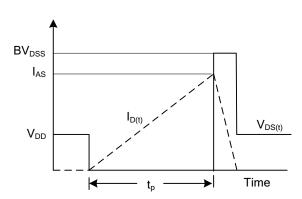
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



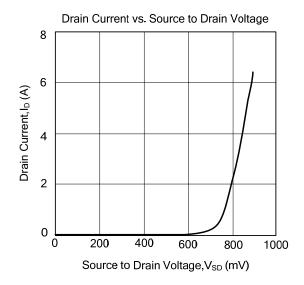
Switching Test Circuit

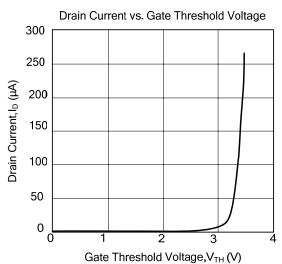

Switching Waveforms

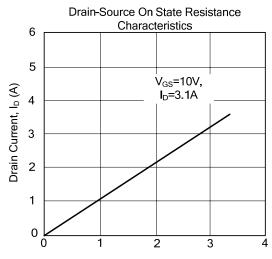


Gate Charge Test Circuit

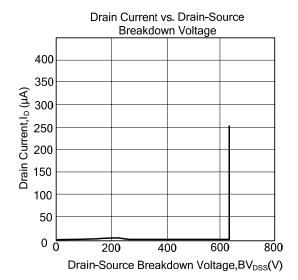
Gate Charge Waveform






Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms


■ TYPICAL CHARACTERISTICS

Drain to Source Voltage, V_{DS} (mV)

