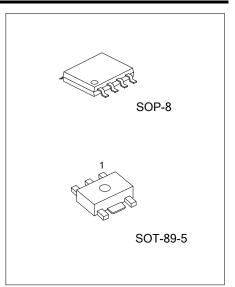


L1138 Preliminary CMOS IC


HIGH OUTPUT CURRENT CMOS VOLTAGE REGULATOR WITH HIGH RIPPLE-REJECTION AND LOW DROPOUT

DESCRIPTION

The UTC **L1138** is a positive LDO voltage regulator using CMOS technology. It is featured as: low dropout voltage, high output voltage accuracy, and low current consumption.

The internal circuits include a low on-resistance transistor to provide a low dropout voltage and large output current; an overcurrent protector to make sure the load current don't exceed the current capacitance of the output transistor, a thermal shutdown circuit to escape device damage from over-heat, and an ON/OFF circuit to keep the battery life longer.

In applications, the UTC **L1138** can be used in power supply unit for DVD, CD-ROM drives, battery-powered devices, personal communication devices, and NBs.

■ FEATURES

* Output voltage's high accuracy: ±1.0%

* Low dropout voltage: ±20mV typ.

@3.0V output, I_{OUT}=300mA

* Low current consumption: 80μA(Typ.)160μA max in operation

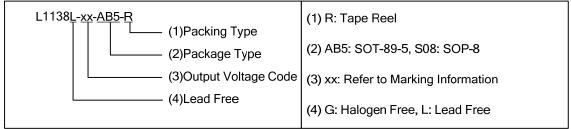
0.1μA(Typ.)1.0μA max in shutdown mode

* High current capability: 800mA output

 $@V_{IN} \ge V_{OUT(S)} + 1.0V$

* With ON/OFF circuit: Ensures long battery life.

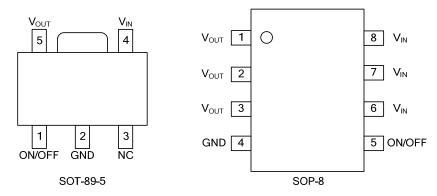
* Low ESR capacitor can be used: at least a 4.7μF ceramic capacitor for the output capacitor.


* High ripple rejection 70dB typ@1.0kHz

* With over current protector* With thermal shutdown circuit

■ ORDERING INFORMATION

Orderi	ng Number	Dookaga	Packing	
Lead Free	Halogen Free	Package		
L1138L-xx-AB5-R	L1138G-xx-AB5-R	SOT-89-5	Tape Reel	
L1138L-xx-S08-R	L1138G-xx-S08-R	SOP-8	Tape Reel	


xx: Output Voltage, refer to Marking Information.

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING		
SOT-89-5	12 :1.2V 25 :2.5V	Date Code L1138 G: Halogen Free L: Lead Free		
SOP-8	28 :2.8V 35 :3.5V	Voltage Code Voltage Code U T C Date Code G: Halogen Free L: Lead Free Lot Code		

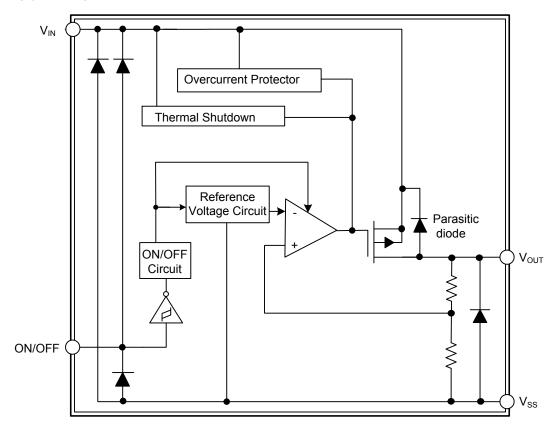
■ PIN CONFIGURATION

■ PIN DESCRIPTION

FOR SOT-89-5 Package

PIN NO.	PIN NAME	DESCRIPTION		
1	ON/OFF	Shutdown Pin		
2	GND	Ground Pin		
3	NC	No Connection, NC pin is electrically open and can be connected V_{IN} and V_{SS}		
4	V_{IN}	Input voltage Pin		
5	V_{OUT}	Output voltage Pin		

FOR SOP-8 Package


- on our windy			
PIN NO.	PIN NAME	DESCRIPTION	
1,2,3	V_{OUT}	Output voltage Pin (Note 1)	
4	GND	Ground Pin	
5	ON/OFF	Shutdown Pin	
6,7,8	V _{IN}	Input voltage Pin (Note 2)	

Note:

1.Short pins 1, 2,3

2.Short pins 6, 7, 8

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING(T_a = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	V _{SS} -0.3~V _{SS} +7	V
Input Voltage	V _{ON/OFF}	V_{SS} -0.3~ V_{IN} +0.3	V
Output Voltage	V_{OUT}	V _{SS} -0.3~V _{IN} +0.3	V
Power Dissipation	P_{D}	Internally limited	mW
Operating Temperature	T _{OPR}	-40~+85	°C
Storage Temperature	T _{STG}	-40~+125	°C

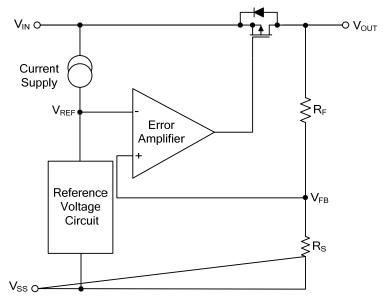
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_a = 25°C, V_{IN}=V_{OUT}+1V, unless otherwise specified)

Parameter		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input Voltage		V_{IN}					6.5	V
Output Voltage (Note	1)	$V_{OUT(E)}$	$V_{IN} = V_{OUT(S)} + 1.0V, I_{OUT} = 100mA$		-1%		+1%	V
Line Regulation		$\frac{\Delta V_{OUT1}}{\Delta V_{IN} \times V_{OUT}}$	$V_{OUT(S)} + 0.5V \le V_{IN} \le 6.5V,$ $I_{OUT} = 100mA$			0.05	0.3	%/V
Load Regulation		ΔV_{OUT2}	$V_{IN} = V_{OUT(S)} + 1.0$ 1.0mA $\leq I_{OUT} \leq 300$			30	100	mV
Output Current (Note 2	2)	I _{OUT}	$V_{IN} \leq V_{OUT(S)} + 1.0 V$	/	800			mA
Current Consumption	Operation	I _{SS1}	$V_{IN} = V_{OUT(S)} + 1.0$ ON/OFF pin = ON	· ·		80	160	μΑ
During	Shutdown	I _{SS2}	V _{IN} = V _{OUT(S)} + 1.0 V, ON/OFF pin = OFF, no load			0.1	1.0	μA
Short-Circuit Current		I _{SHORT}	$V_{IN} = V_{OUT(S)} + 1.0 \text{ V},$ $ON/OFF \text{ pin} = ON, V_{OUT} = 0 \text{ V}$			350		mA
				V _{OUT(S)} =1.2V		0.8	1.0	
Dropout Voltage (Note	. 2)	V _D I _{OU}	I _{OUT} = 300mA	V _{OUT(S)} =2.5V		0.15	0.22	V
Dropout Voltage (Note	3)			V _{OUT(S)} =2.8V		0.15	0.22	
				V _{OUT(S)} =3.5V		0.12	0.18	
Temperature Coefficie Output Voltage	nt of	$T_{C}V_{O}$	$V_{IN} = V_{OUT(S)} + 1.0V,$ $I_{OUT} = 10mA, -40^{\circ}C \le T_a \le 85^{\circ}C$			±150		ppm/° C
Power Supply Rejection		PSRR	$V_{IN} = V_{OUT(S)} + 1.0 V$ $f = 1.0kHz,$	1.2 V ≤V _{OUT(S)} ≤ 3.0 V		70		dB
		TORK	$I_{OUT} = 100 \text{ mA}$ $\Delta V_{rip} = 0.5 V_{rms}$	3.1 V ≤V _{OUT(S)} ≤ 5.5 V		65		_ ub
Shutdown Pin Input	High	V_{SH}	$V_{IN} = V_{OUT(S)} + 1.0V$		1.5			V
Voltage	Low	V_{SL}	$V_{IN} = V_{OUT(S)} + 1.0V$				0.3	V
Shutdown Pin Input	High	I _{SH}	$V_{IN} = 6.5V, V_{ON/OFF} = 6.5V$		-0.1		0.1	μA
Current	Low	I _{SL}	$V_{IN} = 6.5V$, $V_{ON/OFF} = 0V$		-0.1		0.1	μA
Thermal Shutdown	Detection	T_{SD}	Junction temperature			150		°C
Temperature	Release	T_{SR}	Junction temperature			120		°C

Notes: $1.V_{OUT(S)}$: Specified output voltage.

V_{OUT(E)}: Actual output voltage at the fixed load


When fixing(I_{OUT} = 100mA) and inputting $V_{OUT(S)}$ + 1.0 V

- 2. This output current means the one at which the output voltage becomes 98% of $V_{OUT(E)}$ after gradually increasing the output current.
- 3. The dropant voltage is detmed as V_{IN} V_{OUT} , which is measured when V_{OUT} is $V_{OUT(normal)} \times 98\%$

OPERATION

1. Basic operation

The reference voltage (V_{REF}) and V_{FB} (the output voltage resistance-divided by feedback resistors R_S and R_F) are the input for the error amplifier.

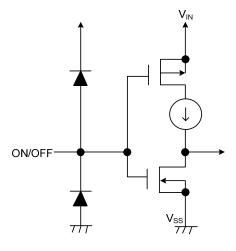
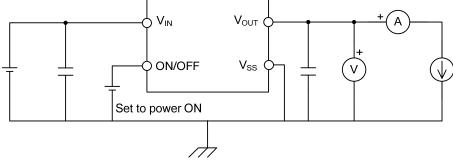
2. Output transistor

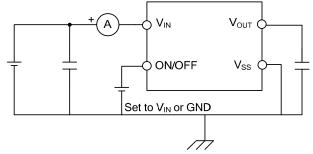
A low on-resistance P-channel MOSFET is used as the output transistor. Inverse current flowing from V_{OUT} pin through a parasitic diode to V_{IN} pin can damage the regulator, so be sure that V_{OUT} does not exceed V_{IN} + 0.3V.

3. Shutdown pin (ON/OFF pin)

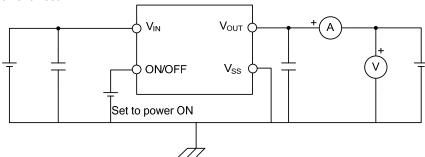
The shutdown pin can start and stop the regulator. The shutdown mode set by this pin can stop the operation of all internal circuits. The structure of the ON/OFF pin is shown in **Fig. 1**. When the ON/OFF pin is not used, connect it to the V_{SS} pin if the logic type is "A" and to the V_{IN} pin if it is "B".

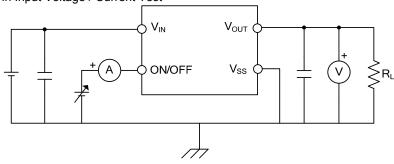
service and 100 pm m and 103 to type to 11 and to and 110 pm m to 2							
Logic Type	ON/OFF Pin	Internal Circuits V _{OUT} Pin Voltage		Current Consumption			
Α	"L": Power on Operating Set		Set value	I _{SS1}			
Α	"H": Power off	Stopped	V _{SS} level	I _{SS2}			
В	"L": Power off	Stopped	V _{SS} level	I _{SS2}			
B "H": Power on		Operating	Set value	I _{SS1}			

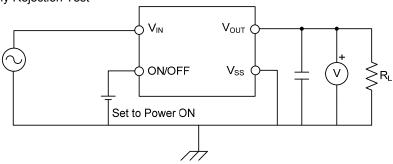



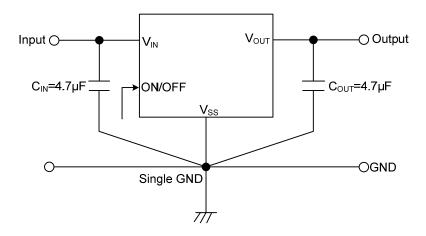

Fig. 1

TEST CIRCUITS


1. Output Voltage Test


2. Current Consumption Test


3. Output Current Test


4. Shutdown Pin Input Voltage / Current Test

5. Power Supply Rejection Test

TYPICAL APPLICATION CIRCUIT

Notes: C_{IN} is a capacitor for stabilizing the input. A ceramic capacitor of $4.7\mu F$ or more can be used for C_{OUT}

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.