

EVQ3386-R-00A

6 string White LED Driver **Evaluation Board** AEC-Q100 Qualified

DESCRIPTION

The EVQ3386-R-00A is an evaluation board for the MPQ3386-R, a step-up converter designed for large liquid-crystal displays that employ an array of LEDs as the light source. It can drive up to 6 strings in parallel and 10 LEDs per string.

The MPQ3386 uses internal switch current mode, fixed frequency architecture and includes current ballast in each string terminal, which achieves 3% current regulation accuracy between strings. Low feedback voltage at each LED string help reduce power loss and improve efficiency.

The MPQ3386 has multiple features to protect the converter from fault conditions, including under-voltage lockout, current limiting, over voltage, short LED, open LED and thermal shut-down protection.

The MPQ3386 is available in small QFN24 (4mmx 4mm) package.

ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Value	Units
Input Voltage	V _{IN}	4.5 – 25	V
LEDs#		6 string parallel and 10 LEDs each string	
LED Current	I _{LED}	20/string	mA

FEATURES

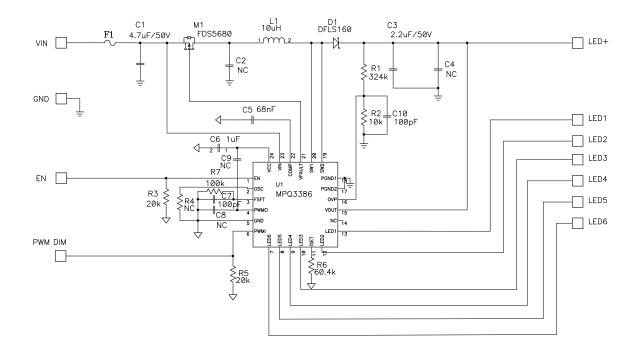
- 4.5V to 25V Input Voltage Range
- Up to 89% Efficiency
- Programmable Over Voltage Protection
- Drives up to 6 Strings Parallel and 10 LEDs in Series.
- 3% Current Regulation Accuracy Between Strings
- Selectable Switching Frequency: 1.25MHz and 625kHz
- Open and Short LED Load Protection
- Thermal Shutdown

APPLICATIONS

- Notebook PC
- Automotive and Industrial
- Small LCD TV
- Handy Terminals Display
- **Automotive Systems and Tablet Computer**

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

EVQ3386-R-00A EVALUATION BOARD



(L x W x H) 7.3cm x 2.0cm x 1.0cm

Board Number	MPS IC Number		
EVQ3386-R-00A	MPQ3386-R		

EVALUATION BOARD SCHEMATIC

EVQ3386-R-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Part Number
1	C1	4.7µF	Ceramic Capacitor, 50V, X7R	1210	Murata	GRM32ER71H475KA88L
2	C2, C4	NC		1210		
1	C3	2.2µF	Ceramic Capacitor, 50V, X7R	1210	TDK	C3225X7R1H225
1	C5	68nF	Ceramic Capacitor, 50V, X7R	0603	Murata	GRM188R71H683KA93D
1	C6	1µF	Ceramic Capacitor, 16V, X5R	0603	Murata	GRM188R71C105KA12D
2	C7, C10	100pF	Ceramic Capacitor, 50V, COG	0603	Murata	GRM1885C1H101JA01D
2	C8, C9	NC		0603		
1	D1		Diode Schottky, 60V, 1A	SMA	Diodes Inc	DFLS160-F
1	F1		Fuse, 2A, 63V	1206	Cooper Bussman	3216FF2-R
1	L1	10µH	Inductor,2.5A	SMD	SUMIDA	CDRH8D28NP-100NC
		10µH	Inductor,2.47A	SMD	Cooper	DR73-100
1	M1		P- channel MOSFET	SO8	Fairchild Semiconductor	FDS5680
1	R1	324kΩ	Resistor, 1%	0603	Yageo	RC0603FR-07324KL
1	R2	10kΩ	Resistor, 1%	0603	Yageo	RC0603FR-0710KL
2	R3, R5	20kΩ	Resistor, 5%	0603	Yageo	RC0603JR-0720KL
1	R4	NC		0603		
1	R6	60.4kΩ	Resistor, 1%	0603	Yageo	RC0603FR-0760K4L
1	R7	100kΩ	Resistor, 1%	0603	Yageo	RC0603FR-07100KL
1	U1	-	LED Driver IC	QFN24	MPS	MPQ3386-R

EVB TEST RESULTS

Performance waveforms are tested on the evaluation board. V_{IN} =12V, 10 LEDs in series, 6 strings parallel, 20mA/string, unless otherwise noted.

Efficiency vs. Input Voltage **Steady State** Vin Startup 95 EFFICIENCY(%) V_{sw} 20V/div 90 V_{sw} 20V/div 85 V_{OUT} V_{IN} 80 20V/div 5V/div Vout 75 20V/div I_{LED} 100mA/div ILED 100mA/div 70 4 10 16 22 28 1us/div 1ms/div INPUT VOLTAGE (V) Ven Startup **PWM Dimming Open LED Protection** f_{PWM} =2kHz, D_{PWM} =50% open all LED strings at working V_{sw} V_{sw} 20V/div V_{sw} 20V/div 20V/div Vout 20V/div Vout V_{OUT} 20V/div 20V/div V_{EN} V_{PWMI} 5V/div 2V/div V_{FAULT} **ILED** I_{LED} I_{LED} 100mA/div 100mA/div 100mA/div 1ms/div 200us/div 20ms/div **Short LED Protection Short LED Protecton** short Vout to GND at working short Vout to LEDx at working V_{SW} V_{sw} 20V/div 20V/div V_{OUT} 20V/div V_{OUT} 20V/div V_{FAULT} 10V/div V_{LED6} 20V/div

I_{LED} 100mA/div

2ms/div

10ms/div

ILED

100mA/div

PRINTED CIRCUIT BOARD LAYOUT

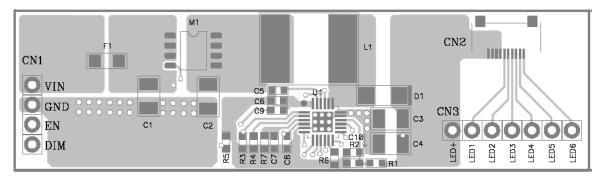


Figure 1—Top Layer

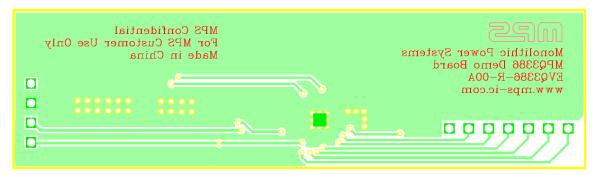


Figure 2—Bottom Layer

QUICK START GUIDE

- 1. Connect the positive and negative terminals of the load panel (10 white LEDs in series, 6 stings paralleled) to the LED+ and LED1~6 pins on the EV board, respectively.
- 2. Connect the positive and negative terminals of the power supply (4.5V ~ 25V) to the VIN and GND pins on the EV board, respectively.
- 3. Drive EN pin high $(2.5V < V_{EN} < 5V)$ to enable the MPQ3386.
- 4. For PWM dimming, apply a PWM rectangular waveform with a minimum voltage less than 0.8V and a maximum greater than 1.5V on PWM DIM pin. The frequency of the PWM signal is recommended between 200Hz to 2kHz.

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.