

Product Features: Small surface mountable, Solid state, Faster time to trip than standard SMD devices, Lower

resistance than standard SMD devices Operation Current: 0.01A~0.25A Maximum Voltage: 9V_{DC}~60V_{DC} Temperature Range: -40°C to 85°C Applications: All high-density boards

Electrical Characteristics (23°C)

Part	Hold	Trip	Rated	Max	Typical	Max Tim	e to Trip	Resis	tance
	Current	Current	Voltage	Current	Power	Current	Time	R _{MIN}	R1 _{MIN}
Number	I _H , A	lτ, Α	V _{MAX} , V _{DC}	I _{MAX} , A	Pd, W	Α	Sec	Ohms	Ohms
F0603L001-60	0.01	0.03	60	40	0.5	0.20	1.00	15.00	100.00
F0603L002-60	0.02	0.06	60	40	0.5	0.20	1.00	12.00	70.00
F0603L003-30	0.03	0.09	30	40	0.5	0.20	1.00	6.00	50.00
F0603L004-24	0.04	0.12	24	40	0.5	0.20	1.00	4.00	40.00
F0603L005-15	0.05	0.15	15	40	0.5	0.50	0.10	3.80	30.00
F0603L008-15	0.08	0.20	15	40	0.5	0.60	0.10	2.80	14.00
F0603L010-15	0.10	0.25	15	40	0.5	0.70	0.10	0.90	8.00
F0603L012-09	0.12	0.30	9	40	0.5	0.80	0.10	1.10	5.80
F0603L016-09	0.16	0.40	9	40	0.5	1.00	0.10	1.00	4.20
F0603L020-09	0.20	0.45	9	40	0.5	2.00	0.10	0.55	3.50
F0603L025-09	0.25	0.55	9	40	0.5	8.00	0.08	0.50	3.00

I_H=Hold current-maximum current at which the device will not trip at 23°Cstill air.

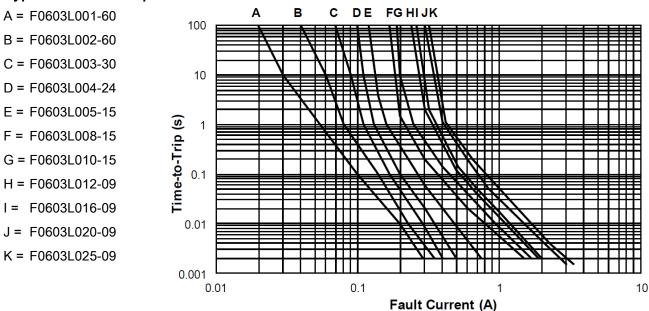
I_T=Trip current-minimum current at which the device will always trip at 23°C still air.

V_{MAX}=Maximum voltage device can withstand without damage at it rated current. (I_{MAX})

I_{MAX}= Maximum fault current device can withstand without damage at rated voltage (V_{MAX}).

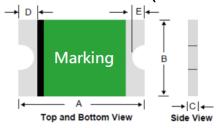
Pd=Typical power dissipated-type amount of power dissipated by the device when in the tripped state in 23°C still air environment.

R_{MIN}=Minimum device resistance at 23°C prior to tripping.


R1_{MAX}=Maximum device resistance at 23°C measured 1 hour after tripping or reflow soldering of 260°C for 20 seconds.

Termination pad characteristics Termination pad materials: Pure Tin

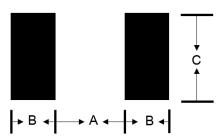
Thermal Derating Curve



Typical Time-To-Trip at 23°C

Product Dimensions (Millimeters)

Part	Α		В		С		D		Е	
Number	Min	Max								
F0603L001-60	1.40	1.80	0.45	1.00	0.35	0.85	0.10	0.50	0.08	0.40
F0603L002-60	1.40	1.80	0.45	1.00	0.35	0.85	0.10	0.50	0.08	0.40
F0603L003-30	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	0.08	0.40
F0603L004-24	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	80.0	0.40
F0603L005-15	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	0.08	0.40
F0603L008-15	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	0.08	0.40
F0603L010-15	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	0.08	0.40
F0603L012-09	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	0.08	0.40
F0603L016-09	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	0.08	0.40
F0603L020-09	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	0.08	0.40
F0603L025-09	1.40	1.80	0.45	1.00	0.35	0.75	0.10	0.50	0.08	0.40


Material Specification

Terminal pad material: Pure Tin

Soldering characteristics: Meets EIA specification RS 186-9E, ANSI/J-std-002 Category 3

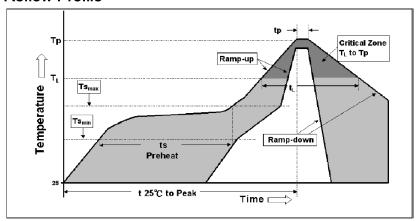
Pad Layouts, Solder Reflow and Rework Recommendations

The dimension in the table below provide the recommended pad layout for each F0603L device

Pad dimensions (millimeters)						
Device	Α	В	С			
	Nominal	Nominal	Nominal			
F0603L	0.80	0.60	0.80			

Profile Feature	Pb-Free Assembly			
Average Ramp-Up Rate (Tsmax to Tp)	3°C/second max.			
Preheat:				
Temperature Min (Tsmin)	150°C			
Temperature Max (Tsmax)	200°C			
Time (tsmin to tsmax)	60~180 seconds			
Time maintained above:				
Temperature(T _L)	217°C			
Time (t∟)	60~150 seconds			
Peak/Classification Temperature(Tp):	260°C			
Time within 5°C of actual Peak:				
Temperature (tp)	20~40 seconds			
Ramp-Down Rate:	6°C/second max.			
Time 25°C to Peak Temperature:	8 minutes max.			

Note 1: All temperatures refer to of the package, measured on the package body surface.


Solder reflow

- W Due to "Lead Free" nature, Temperature and Dwelling time for the soldering zone is higher than those for Regular. This may cause damage to other components.
- Recommended max paste thickness is 0.25mm. (Nominal)
- Devices can be cleaned using standard methods and aqueous solvent.
- 3. Rework use standard industry practices.
- 4. Storage Environment: < 30°C / 60%RH

Caution:

- 1. If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.
- 2. Devices are not designed to be wave soldered to the bottom side of the board.

Reflow Profile

NOTE: Specification subject to change without notice.

Warning

- Each product should be carefully evaluated and tested for their suitability of application.
- Operation beyond the specified maximum rating or improper use may result in damage and possible electrical arcing and/or flame.
- PPTC device are intended for occasional overcurrent protection. Application for repeated overcurrent condition and/or prolonged trip are not anticipated.
- Avoid contact of PPTC device with chemical solvent, including some inert material such as silicone based oil, lubricant and etc. Prolonged contact will damage the device performance.
- Additional protection mechanism are strongly recommended to be used in conjunction with the PPTC device for protection against abnormal or failure conditions.
- Avoid use of PPTC device in a constrained space such as potting material, housing and containers where have limited space to accommodate device thermal expansion and/or contraction