Appendix A - ATmega88 Automotive Automotive specification at 150°C

This document contains information specific to devices operating at temperatures up to 150°C. Only deviations are covered in this appendix, all other information can be found in the complete Automotive datasheet. The complete Automotive datasheet can be found on www.atmel.com

8-bit AVR®
Microcontroller
with 8K Bytes
In-System
Programmable
Flash

ATmega88 Automotive

Appendix A

PRELIMINARY

Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature55°C to +150°C
Storage Temperature65 ℃ to +175 ℃
Voltage on any Pin except RESET with respect to Ground0.5V to V _{CC} +0.5V
Voltage on RESET with respect to Ground0.5V to +13.0V
Maximum Operating Voltage 6.0V
DC Current per I/O Pin
DC Current V _{CC} and GND Pins200.0 mA

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_A = -40$ °C to 150°C, $V_{CC} = 2.7$ V to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{IL}	Input Low Voltage, except XTAL1 and RESET pin	V _{CC} = 2.7V - 5.5V	-0.5		0.3V _{CC} ⁽¹⁾	٧
V _{IH}	Input High Voltage, except XTAL1 and RESET pins	V _{CC} = 2.7V - 5.5V	0.6V _{CC} ⁽²⁾		V _{CC} + 0.5	٧
V _{IL1}	Input Low Voltage, XTAL1 pin	V _{CC} = 2.7V - 5.5V	-0.5		0.1V _{CC} ⁽¹⁾	٧
V _{IH1}	Input High Voltage, XTAL1 pin	V _{CC} = 2.7V - 5.5V	0.7V _{CC} ⁽²⁾		V _{CC} + 0.5	٧
$V_{\rm IL2}$	Input Low Voltage, RESET pin	V _{CC} = 2.7V - 5.5V	-0.5		0.2V _{CC} ⁽¹⁾	٧
V _{IH2}	Input High Voltage, RESET pin	V _{CC} = 2.7V - 5.5V	0.9V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IL3}	Input Low Voltage, RESET pin as I/O	V _{CC} = 2.7V - 5.5V	-0.5		0.3V _{CC} ⁽¹⁾	٧
V _{IH3}	Input High Voltage, RESET pin as I/O	V _{CC} = 2.7V - 5.5V	0.6V _{CC} ⁽²⁾		V _{CC} + 0.5	٧
V _{OL}	Output Low Voltage ⁽³⁾ , I/O pin except RESET	$I_{OL} = 20$ mA, $V_{CC} = 5$ V $I_{OL} = 5$ mA, $V_{CC} = 3$ V			0.8 0.5	٧
V _{OH}	Output High Voltage ⁽⁴⁾ , I/O pin except RESET	$I_{OH} = -20 \text{mA}, V_{CC} = 5 \text{V}$ $I_{OH} = -10 \text{mA}, V_{CC} = 3 \text{V}$	4.0 2.2			V
I _{IL}	Input Leakage Current I/O Pin	V _{CC} = 5.5V, pin low (absolute value)			1	μΑ
I _{IH}	Input Leakage Current I/O Pin	V _{CC} = 5.5V, pin high (absolute value)			1	μΑ
R _{RST}	Reset Pull-up Resistor		30		60	kΩ
R _{PU}	I/O Pin Pull-up Resistor		20		50	kΩ

ATmega88 Automotive

 T_A = -40°C to 150°C, V_{CC} = 2.7V to 5.5V (unless otherwise noted) (Continued)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{CC}		Active 4MHz, V _{CC} = 3V Active 8MHz, V _{CC} = 5V			8 16	mA
	Power Supply Current ⁽⁶⁾	Active 16MHz, V _{CC} = 5V			25	mA
I _{CC IDLE}		Idle 4MHz, $V_{CC} = 3V$ Idle 8MHz, $V_{CC} = 5V$			6 12	mA
		Idle 16MHz, V _{CC} = 5V			14	mA
	Power-down mode	WDT enabled, $V_{CC} = 3V$ WDT enabled, $V_{CC} = 5V$			90 140	μΑ
I _{CC PWD}		WDT disabled, V _{CC} = 3V WDT disabled, V _{CC} = 5V			80 120	μА
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$		<10	40	mV
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50		50	nA
t _{ACPD}	Analog Comparator Propagation Delay	V _{CC} = 4.0V		500		ns



Maximum Speed vs. V_{CC}

Maximum frequency is dependent on $V_{CC.}$ As shown in Figure 131, the Maximum Frequency vs. V_{CC} curve is linear between 2.7V < V_{CC} < 4.5V.

Figure 1. Maximum Frequency vs. V_{CC}

ADC Characteristics⁽⁶⁾

 $T_A = -40$ °C to 150°C, $V_{CC} = 4.5$ V to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Units
	Resolution			10		Bits
	Absolute accuracy	$V_{REF} = 4V$, $V_{CC} = 4V$, ADC clock = 200 kHz		2	3.5	LSB
	(Including INL, DNL, quantization error, gain and offset error)	V _{REF} = 4V, V _{CC} = 4V, ADC clock = 200 kHz Noise Reduction Mode		2	3.5	LSB
	Integral Non-Linearity (INL)	$V_{REF} = 4V$, $V_{CC} = 4V$, ADC clock = 200 kHz		0.6	2.5	LSB
	Differential Non-Linearity (DNL)	V _{REF} = 4V, V _{CC} = 4V, ADC clock = 200 kHz		0.30	1.0	LSB
	Gain Error	V _{REF} = 4V, V _{CC} = 4V, ADC clock = 200 kHz	-3.5	-1.3	3.5	LSB
	Offset Error	$V_{REF} = 4V$, $V_{CC} = 4V$, ADC clock = 200 kHz		1.8	3.5	LSB
	Conversion Time	Free Running Conversion	13 cycles			μs
	Clock Frequency		50		200	kHz
AV _{CC}	Analog Supply Voltage		V _{CC} - 0.3		V _{CC} + 0.3	V
V _{REF}	Reference Voltage		1.0		AV _{CC}	V
V _{IN}	Input Voltage		GND		V _{REF}	V
	Input Bandwidth			38.5		kHz
V _{INT}	Internal Voltage Reference		1.0	1.1	1.2	V
R _{REF}	Reference Input Resistance		25.6	32	38.4	kΩ
R _{AIN}	Analog Input Resistance			100		$M\Omega$

- Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low
 - 2. "Min" means the lowest value where the pin is guaranteed to be read as high
 - 3. Although each I/O port can sink more than the test conditions (20mA at $V_{CC} = 5V$) under steady state conditions (non-transient), the following must be observed:
 - 1] The sum of all IOL, for all ports, should not exceed 400 mA.
 - 2] The sum of all IOL, for ports C0 C5, should not exceed 200 mA.
 - 3] The sum of all IOL, for ports C6, D0 D4, should not exceed 300 mA.
 - 4] The sum of all IOL, for ports B0 B7, D5 D7, should not exceed 300 mA.
 - If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
 - 4. Although each I/O port can source more than the test conditions (20mA at Vcc = 5V) under steady state conditions (nontransient), the following must be observed:
 - 1] The sum of all IOH, for all ports, should not exceed 400 mA.
 - 2] The sum of all IOH, for ports C0 C5, should not exceed 200 mA.
 - 3] The sum of all IOH, for ports C6, D0 D4, should not exceed 300 mA.
 - 4] The sum of all IOH, for ports B0 B7, D5 D7, should not exceed 300 mA.

If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. Minimum V_{CC} for Power-down is 2.5V.

ATmega88 Automotive Typical Characteristics

Active Supply Current

Figure 2. Active Supply Current vs. Frequency (1 - 20 MHz)

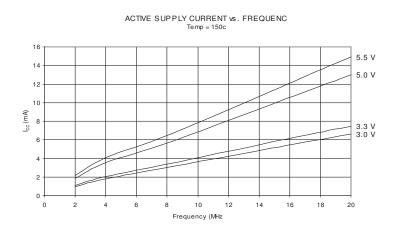
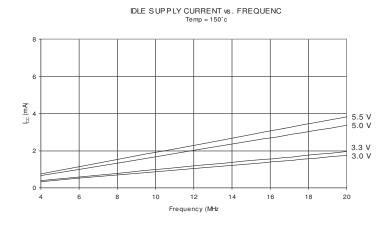



Figure 3. Idle Supply Current vs. Frequency (1 - 20 MHz)

Power-Down Supply Current

Figure 4. Power-Down Supply Current vs. V_{CC} (Watchdog Timer Disabled)

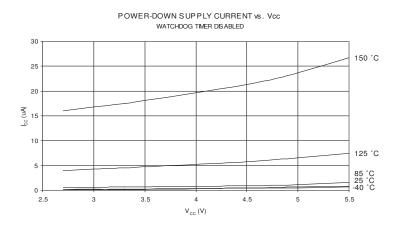
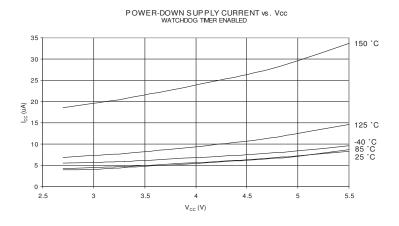
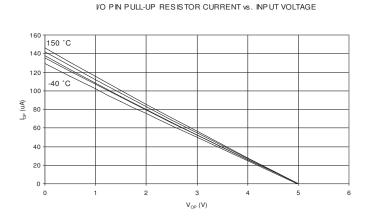
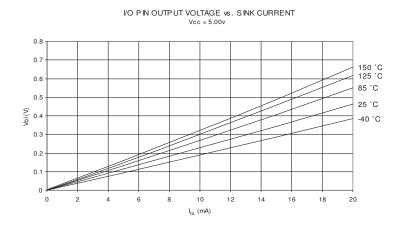
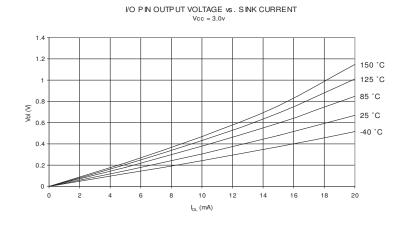




Figure 5. Power-Down Supply Current vs. V_{CC} (Watchdog Timer Enabled)

Pin Pull-up


Figure 6. I/O Pin Pull-up Resistor Current vs. Input Voltage $(V_{CC} = 5V)$



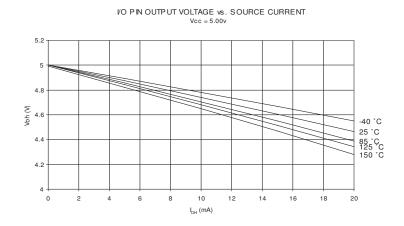

Figure 7. Output Low Voltage vs. Output Low Current ($V_{CC} = 5V$)

Figure 8. Output Low Voltage vs. Output Low Current ($V_{CC} = 3V$)

Figure 9. Output High Voltage vs. Output High Current ($V_{CC} = 5V$)

Figure 10. Output High Voltage vs. Output High Current ($V_{CC} = 3V$)

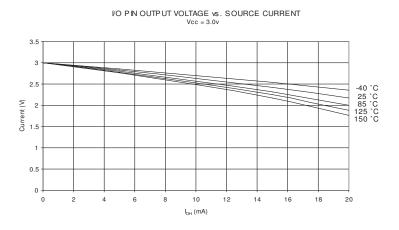
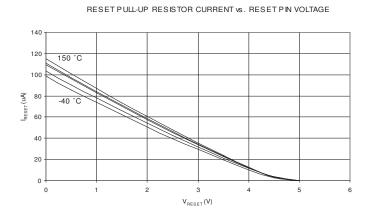



Figure 11. Reset Pull-Up Resistor Current vs. Reset Pin Voltage (V_{CC} = 5V)

Pin Thresholds and Hysteresis

Figure 12. I/O Pin Input Threshold vs. V_{CC} (VIH, I/O Pin Read as '1')

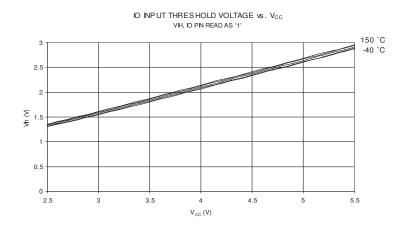


Figure 13. I/O Pin Input Threshold vs. V_{CC} (VIL, I/O Pin Read as '0')

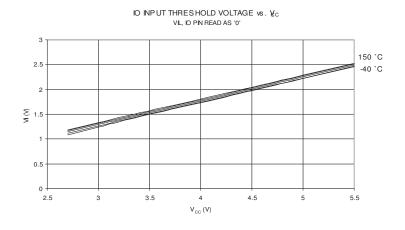
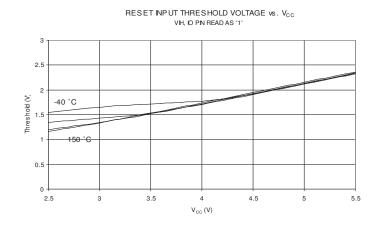
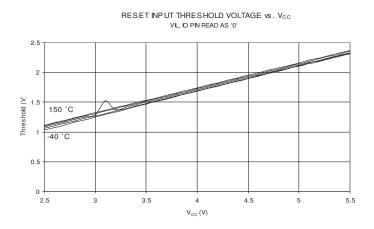




Figure 14. Reset Input Threshold Voltage vs. V_{CC} (VIH, Reset Pin Read as '1')

Figure 15. Reset Input Threshold Voltage vs. V_{CC} (VIL, Reset Pin Read as '0')

Internal Oscillator Speed

Figure 16. Watchdog Oscillator Frequency vs. V_{CC}

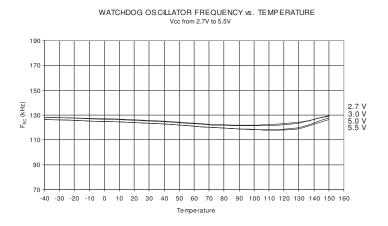


Figure 17. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

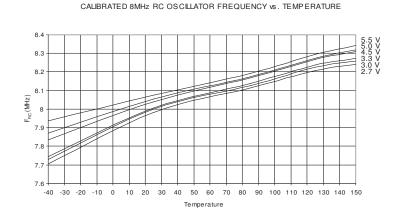


Figure 18. Calibrated 8 MHz RC Oscillator Frequency vs. V_{CC}

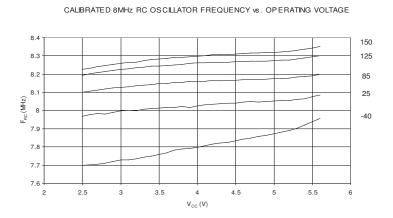
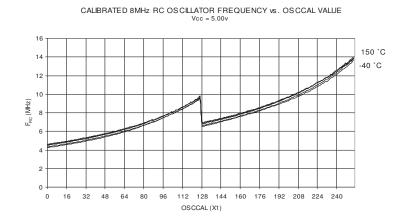



Figure 19. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

BOD Thresholds and Analog Comparator Offset

Figure 20. BOD Threshold vs. Temperature (BODLEVEL is 4.0V)

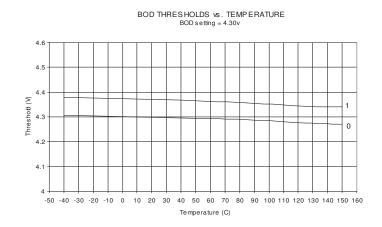


Figure 21. BOD Threshold vs. Temperature (BODLEVEL is 2.7V)

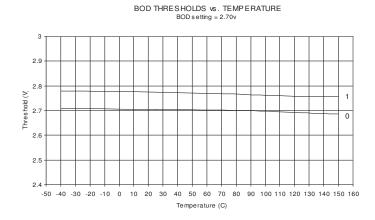
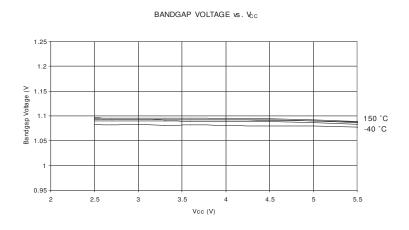



Figure 22. Bandgap Voltage vs. V_{CC}

Peripheral Units

Figure 23. Analog to Digital Converter GAIN vs. V_{CC}

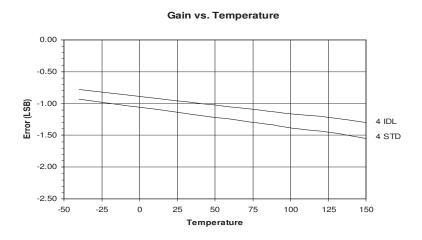


Figure 24. Analog to Digital Converter OFFSET vs. V_{CC}

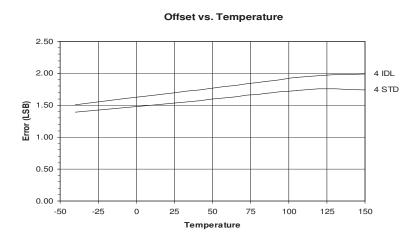


Figure 25. Analog to Digital Converter DNL vs. $\rm V_{\rm CC}$

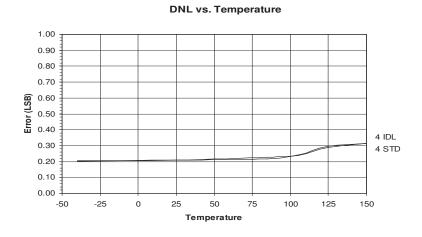
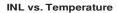
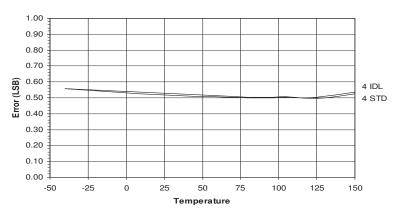
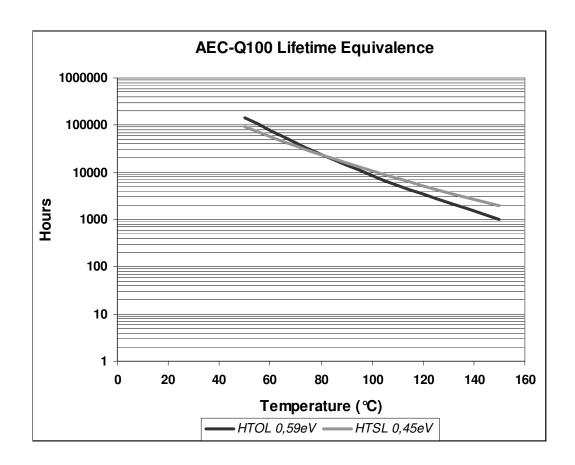




Figure 26. Analog to Digital Converter INL vs. $\rm V_{\rm CC}$



Grade 0 Qualification

The ATmega88 has been developed and manufactured according to the most stringent quality assurance requirements of ISO-TS-16949 and verified during product qualification as per AEC-Q100 grade 0.

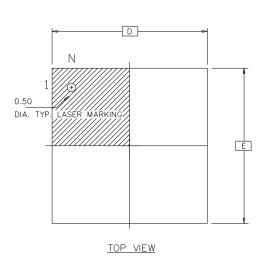
AEC-Q100 qualification relies on temperature accelerated stress testing. High temperature field usage however may result in less significant stress test acceleration. In order to prevent the risk that ATmega88 lifetime would not satisfy the application end-of-life reliability requirements, Atmel has extended the testing, whenever applicable (High Temperature Operating Life Test, High Temperature Storage Life, Data Retention, Thermal Cycles), far beyond the AEC-Q100 requirements. Thereby, Atmel verified the ATmega88 has a long safe lifetime period after the grade 0 qualification acceptance limits.

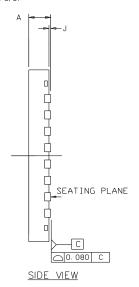
The valid domain calculation depends on the activation energy of the potential failure mechanism that is considered. Examples are given in figure 1. Therefore any temperature mission profile which could exceed the AEC-Q100 equivalence domain shall be submitted to Atmel for a thorough reliability analysis

Ordering Information

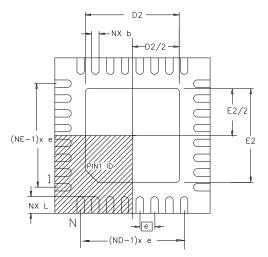
ATmega88 Automotive

Speed (MHz) Power Supply		Ordering Code	Package ⁽¹⁾	Operation Range	
16 ⁽²⁾	2.7 - 5.5V	ATmega88-15MT2	PN	Extended (-40°C to 150°C)	


Notes: 1. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.


2. For Speed vs. V_{cc} , see complete datasheet.

	Package Type
PN	32-pad, 5 x 5 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF): E2/D2 3.1 +/-0.1mm


PΝ

32 LEADS Quad Flat No lead

DRAWINGS NOT SCALED

ММ					
MIN	NDM	MAX	MIN	NDM	MAX
0. 80	-	1. 00	. 032	-	. 040
0. 00		0. 05	. 000		. 002
5. 00	00 +/- 0.10		. 197	+/-	. 004
*	*	*	-	-	-
32					
8					
8					
0. 50 BSC				. 020	BSC
0. 30	0. 40	0. 50	. 012	. 016	. 020
0. 18	0. 25	0. 30	. 007	. 010	. 012
	0. 80 0. 00 5. 00 *	MIN NOM 0. 80 - 0. 00 5. 00 +/- * * 0. 50 0. 30 0. 40	MIN NOM MAX 0. 80 - 1. 00 0. 00 0. 05 5. 00 +/- 0. 10 * * * * 0. 50 BSC 0. 30 0. 40 0. 50	MIN NOM MAX MIN 0.80 - 1.00 .032 0.00 - 2.10 .197 * * * * - 32 - 32 - 35 -	MIN NDM MAX MIN NDM 0. 80 - 1. 00 . 032 - 0. 00 . 0. 05 . 000 5. 00 +/- 0. 10 . 197 +/- * * * * 32 8 0. 50 BSC . 020 0. 01 . 016

*See Package Information

BOTTOM VIEW

Compliant JEDEC Standard MD-220 variation VHHD-2

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18

Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

©2007 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®], AVR[®], and AVR Studio[®] are registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

