

LOT-16 & LOS-16 Series

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Switching Regulator

- ⊕ Efficiency 92%
- Operating temperature range: -40°C ~ +85°C
- Short circuit protection (SCP)
- ⊕ Input under-voltage lockout SIP or SMD package
- Compliant to RoHs directive 2002/95/EC

The LOT-16 and LOS-16 series are high efficiency switching regulators. The product is featured with high efficiency, low loss, short circuit protection and no heat sink requirement.

They are widely used in wireless networks, Telecom/Datacom, distributed power architectures, industry control systems, semiconductor equipment, microprocessor power applications, etc.

Common specifications	
Short circuit protection:	Hiccup, automatic recovery
Temperature rise at full load:	25°C MAX, 15°C TYP
Cooling:	Free air convection
Operation temperature range:	-40°C~+85°C (with derating)
Storage temperature range:	-55°C ~+125°C
Thermal shock:	MIL-STD-810F
Over temperature protection:	125°C TYP
Operating case temperature:	100°C
Storage humidity range:	< 95%RH
MTBF (+25°C MIL-HDBK-217F):	6.704x10⁵ hours TYP
Weight:	6g

Input specifications					
Item	Test conditions	Min	Тур	Max	Units
Voltage tolerance	Vo set ≤ 3.63VVo set > 3.63V	8.3 8.3	12 12	14 13.2	VDC VDC
Input current	Vin = 8.3 to 14.0VDC; lo (max.)			10	А
Input filter*	C filter				
No Load Current	 Vo (set) = 0.75Vdc, Vin = 5 Vo (set) = 5.0Vdc Vin = 12 		40 100		mA mA
Under Voltage Lockout	Start-up VoltageShutdown Voltage		7.9 7.8		V V
Input reflected ripple current	5~20MHz, 1uH source impedance		20		mAp-p

* It's necessary to equip the external input capacitors at the input of the module. The capacitors should connect as close as possible to the input terminals that ensuring module stability. The external Cin is $6{\times}47\mu\text{F}$ ceramic capacitors at least.

Model selection:

LOX_xx-16

LO = Series; X = case type; ##= Vin; pp = output current

Example:

LOT_12-16

LO = Series; T = SMT; 12 = Vin (nominal); 16 = Output current: 16A

Output specifications Item Test conditions Min Typ Max Units Output current 16 A Voltage tolerance Full load and Vin(nom.) ±2 % Minimum load 0 % Line regulation Vin = Vin (min) to Vin (max) at full load ±0.3 % Load regulation 0% to 100% load ±0.4 % Ripple + Noise* 20MHz Bandwidth 30 75 75 Temperature coefficient ±0.4 %/°C Dynamic load response* Load change step (50% to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) 25 mS Peak deviation Load change step (50% to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) 25 mS Dynamic load response** Load change step (50% to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) 25 mS Peak deviation $\Delta Io/\Delta t = 2.5A/uS$, Vin (mom) 100 mV Output current limit $ESR≥Im\Omega$ <	Output specificat	tions				
Output current Voltage tole-rance Full load and Vin(nom.) Vin = Vin (min) to Vin (max) at full load Line regulation Vin = Vin (min) to Vin (max) at full load Load regulation O% to 100% load Fipple + Noise* 20MHz Bandwidth 30 75 Temperature coefficient Dynamic load response* to 100% or 100% to 50% of 10 (max) Setting time (Vo<10% peak deviation) Peak deviation Dynamic load response** $Alo/\Delta t = 2.5A/uS$, $Vin(nom)$ Dynamic load response** $Alo/\Delta t = 2.5A/uS$, $Vin(nom)$ Dynamic load response** $Alo/\Delta t = 2.5A/uS$, $Vin(nom)$ Dunamic load response deviation $Alo/\Delta t = 2.5A/uS$, $Vin(nom)$ Dunamic load response deviation $Alo/\Delta t = 2.5A/uS$, $Vin(nom)$ Dunamic load response deviation Peak deviation $Alo/\Delta t = 2.5A/uS$, $Vin(nom)$ Dutput current limit External load response deviation $Alo/\Delta t = 2.5A/uS$, $Vin(nom)$ Output current limit External load response deviation $Alo/\Delta t = 2.5A/uS$, $Vin(nom)$ Output voltage response deviation Vin = Vin (min) to Vin (max); F.L. Voltage (see fig.1) O.7525 5 V						
Voltage tolerance Full load and Vin(nom.) ± 2 % minimum load 0 % 0	Item	Test conditions	Min	Тур	Max	Units
rance $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output current				16	А
Line regulation Vin = Vin (min) to Vin (max) at full load Load regulation 0% to 100% load ±0.4 % Ripple + Noise* 20MHz Bandwidth 30 75 Temperature coefficient Dynamic load response* Load change step (50% to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Peak deviation ΔIο/Δt = 2.5A/uS, Vin(nom) Dynamic load response** to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Peak deviation ΔIο/Δt = 2.5A/uS, Vin (nom) Dynamic load response** to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Peak deviation ΔIο/Δt = 2.5A/uS, Vin (nom) Output current limit External load • ESR≥1mΩ • ESR≥1mΩ 1000 uF 5000 uF Switching frequency 300 KHz Output voltage overshoot-startup Voltage (see fig.1) 0.7525 5 V		Full load and Vin(nom.)			±2	%
Load regulation 0% to 100% load ±0.4 % Ripple + Noise* 20MHz Bandwidth 30 75 Temperature coefficient ±0.4 %/°C Dynamic load response* Load change step (50% to 100% or 100% to 50% of 10 (max) Setting time (Vo<10% peak deviation)	Minimum load				0	%
Ripple + Noise* 20MHz Bandwidth 30 75 Temperature coefficient ± 0.4 %/°C Dynamic load response* $\pm 0.00\%$ to 100% or 100% to 50% of 10 (max) Setting time (Vo<10% peak deviation) Peak deviation $\Delta lo/\Delta t = 2.5 A/uS$, $Vin(nom)$ Dynamic load response** $\pm 0.00\%$ to 100% or 100% to 50% of 10 (max) Setting time (Vo<10% peak deviation) Peak deviation $\Delta lo/\Delta t = 2.5 A/uS$, $Vin(nom)$ Dynamic load response** $\pm 0.00\%$ or 100% to 50% of 10 (max) Setting time (Vo<10% peak deviation) Peak deviation $\Delta lo/\Delta t = 2.5 A/uS$, $Vin(nom)$ Dutput current limit $\pm 0.00\%$ $\pm 0.$	Line regulation			±0.3		%
Temperature coefficient Dynamic load response* Load change step (50% to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Peak deviation Dynamic load response** Load change step (50% to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Dynamic load response** Load change step (50% to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Peak deviation Alo/Δt = 2.5A/uS, Vin 100 mV Output current limit External load response** External load response** Switching frequency 300 KHz Output voltage overshoot-startup Voltage (see fig.1) 0.7525 5 V	Load regulation	0% to 100% load		±0.4		%
coefficient Dynamic load response* Load change step (50% to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation)	Ripple + Noise*	20MHz Bandwidth				
response* to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Peak deviation $\Delta lo/\Delta t = 2.5 A/uS$, $Vin(nom)$ Dynamic load response** to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Peak deviation $\Delta lo/\Delta t = 2.5 A/uS$, $Vin(nom)$ Dynamic load response** to 100% or 100% to 50% of lo (max) Setting time (Vo<10% peak deviation) Peak deviation $\Delta lo/\Delta t = 2.5 A/uS$, $Vin(nom)$ Dutput current limit $\Delta lo/\Delta t = 2.5 A/uS$, $\Delta lo/\Delta t $				±0.4		%/°C
Vin(nom) Dynamic load response** Load change step (50% to 100% or 100% to 50% of Io (max) Setting time (Vo<10% peak deviation) Peak deviation $\Delta Io/\Delta t = 2.5A/uS$, Vin (nom) 100 mV Output current limit 200 % External load capacitance • ESR≥1mΩ • ESR≥10mΩ 1000 uF 5000 uF Switching frequency 300 KHz Output voltage overshoot-startup Vin = Vin (min) to Vin (max); F.L. 1 % Voltage (see fig.1) 0.7525 5 V		to 100% or 100% to 50% of Io (max) Setting time (Vo<10%		25		mS
response** to 100% or 100% to 50% of Io (max) Setting time (Vo<10% peak deviation) Peak deviation ΔIo/Δt = 2.5A/uS, Vin (nom) Output current limit External load capacitance • ESR≥1mΩ • ESR≥10mΩ Switching frequency Output voltage overshoot-startup Voltage (see fig.1) to 100 mV 100 uF 5000 uF 5000 uF 6 KHz	Peak deviation			200		mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		to 100% or 100% to 50% of Io (max) Setting time (Vo<10%		25		mS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peak deviation			100		mV
capacitance \bullet ESR $\ge 10 \text{m}\Omega$ 5000 uF Switching frequency 300 KHz Output voltage overshoot- startup Voltage (see fig.1) 0.7525 5 V				200		%
Output voltage overshoot- startup Vin = Vin (min) to Vin 1 % (max); F.L. Voltage (see fig.1) 0.7525 5 V						
overshoot- startup Voltage (see fig.1) 0.7525 5 V	Switching frequen	су	300			KHz
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	overshoot-			1		%
		(see fig.1)	0.7525		5	V

- * External with Cout = $1\mu F$ ceramic// $10\mu F$ tantalum capacitors. ** External with Cout = $2\times150\mu F$ polymer capacitors.

LOT-16 & LOS-16 Series

Wide Input Non-Isolated & Regulated, Single Positive/Negative Output

Feature specifications						
Item	Test conditions	Min	Тур	Max	Units	
Remote ON/OFF Negative logic (standard)	$ON = OV < Vr < 0.3V@I_{IN}$ $OFF = 2.5V < Vr < Vin(Max)@I_{IN}$			10 1	uA mA	
Input current of remote control pin		0.01		1	mA	
Remote off state input current Nominal Vin			2		mA	
Remote sense strange				0.5	V	
Rise time	Time for Vo to rise from 10% to 90%of Vo(set))			6	ms	
Turn-on delay time	Case 1 and 2, see notes below		3		ms	

Note:

Case 1: On/Off input is set to logic low (module on) and then input power is applied (delay from instant at which Vin=Vin(min) until Vo=10% of Vo(set))

Case 2: Input power is applied for at least one second and then the On/Off input is set to logic low (delay from instant at which Von/off=0.3V until Vo=10% of Vo(set))

Part Number	ON/OFF logic	Input Voltage [VDC]	Output Voltage [VDC]	Output Current [min/max load; A]	Efficiency [%, typ]
LOX_12-06	negative	Vo (set) ≤3.63V Vin = 8.3~14VDC	0.75 ~ 5.0	0/16	92

X = T: SMD package X = S: SIP package

Typical characteristics

Efficiency

Mechanical dimensions

Note:

- 1. The max. capacitive load should be tested within the input voltage range and under full load conditions;
- 2. Without any special statement, all indexes are only specific to positive output application;
- Unless otherwise specified, data in this datasheet should be tested under the conditions of Ta=25°C, humidity<75% when inputting nominal voltage and outputting rated load;
- 4. All index testing methods in this datasheet are based on our Company's corporate standards;
- 5. The performance indexes of the product models listed in this manual are as above, but some indexes of non-standard model products will exceed the above-mentioned requirements, and please directly contact with our technician for specific information;
- 6. Specifications subject to change without prior notice.

CAUTION: This power module is not internally fused. An input line fuse must always be used.