

HMC505LP4 / 505LP4E

v02.0508

MMIC VCO w/ BUFFER AMPLIFIER, 6.8 - 7.4 GHz

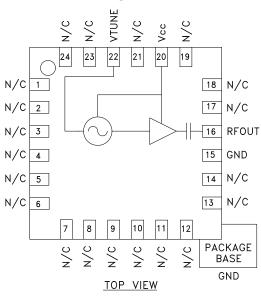
Typical Applications

Low noise MMIC VCO w/Buffer Amplifier for:

- VSAT & Microwave Radio
- Test Equipment & Industrial Controls
- Military

Features

Pout: +11dBm


Phase Noise: -106 dBc/Hz @100 kHz

No External Resonator Needed

Single Supply: +3V @ 80 mA

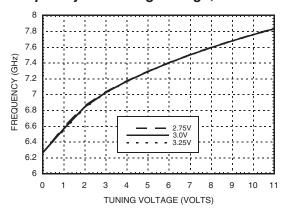
QFN Leadless SMT Package, 16mm²

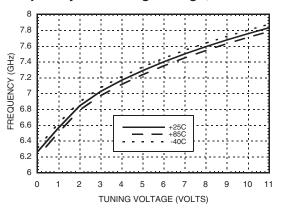
Functional Diagram

General Description

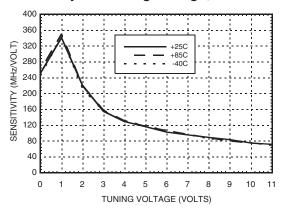
The HMC505LP4 & HMC505LP4E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs with integrated resonators, negative resistance devices, varactor diodes, and buffer amplifiers. Covering 6.8 to 7.4 GHz, the VCO's phase noise performance is excellent over temperature, shock and vibration due to the oscillator's monolithic structure. Power output is +11 dBm typical from a single supply of +3V @ 80 mA. The voltage controlled oscillator is packaged in a leadless QFN 4x4 mm surface mount package.

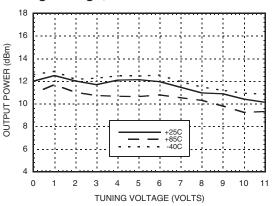
Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vcc = +3V

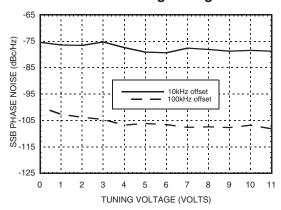

Parameter	Min.	Тур.	Max.	Units
Frequency Range	6.8 - 7.4			GHz
Power Output	8	11		dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output		-106		dBc/Hz
Tune Voltage (Vtune)	1		11	V
Supply Current (Icc) (Vcc = +3.0V)		80		mA
Tune Port Leakage Current			10	μΑ
Output Return Loss		9		dB
Harmonics 2nd 3rd		-19 -28		dBc dBc
Pulling (into a 2.0:1 VSWR)		6		MHz pp
Pushing @ Vtune= +5V		20		MHz/V
Frequency Drift Rate		0.8		MHz/°C

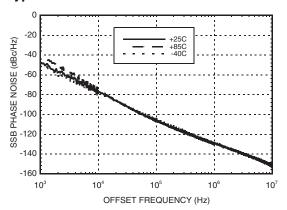


MMIC VCO w/ BUFFER AMPLIFIER, 6.8 - 7.4 GHz


Frequency vs. Tuning Voltage, T= 25°C


Frequency vs. Tuning Voltage, Vcc= +3V


Sensitivity vs. Tuning Voltage, Vcc= +3V


Output Power vs.
Tuning Voltage, Vcc= +3V

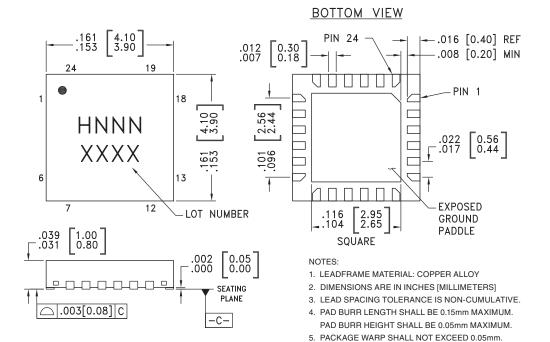
Phase Noise vs. Tuning Voltage

Typical SSB Phase Noise @ Vtune= +5V

MMIC VCO w/ BUFFER AMPLIFIER, 6.8 - 7.4 GHz

Absolute Maximum Ratings

Vcc	+3.5 Vdc
Vtune	0 to +11V
Channel Temperature	135 °C
Continuous Pdiss (T = 85°C) (derate 6.31 mW/°C above 85°C)	315 mW
Thermal Resistance (R _{TH}) (junction to package base)	158 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A


Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
2.75	70
3.0	80
3.25	90

Note: VCO will operate over full voltage range shown above.

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC505LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H505 XXXX
HMC505LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H505</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

6. ALL GROUND LEADS AND GROUND PADDLE MUST BE

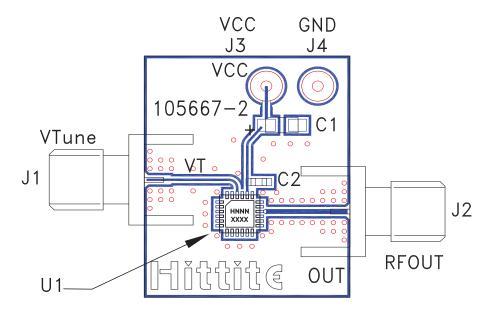
7. REFER TO HITTITE APPLICATION NOT FOR SUGGESTED

SOLDERED TO PCB RF GROUND.

LAND PATTERN.

MMIC VCO w/ BUFFER AMPLIFIER, 6.8 - 7.4 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1- 14, 17 - 19, 21, 23, 24	N/C	No Connection. These pins may be connected to RF ground. Performance will not be affected.	
15	GND	This pin must be connected to RF & DC ground.	→ GND —
16	RFOUT	RF output (AC coupled)	— —○ RFOUT
20	Vcc	Supply Voltage Vcc= 3V	Vcc O26pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	VTUNE 0 1500 2.4pF
	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	○ GND =

MMIC VCO w/ BUFFER AMPLIFIER, 6.8 - 7.4 GHz

Evaluation PCB

List of Materials for Evaluation PCB 105706 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3 - J4	DC Pin
C1	4.7 μF Tantalum Capacitor
C2	10,000 pF Capacitor, 0603 Pkg.
U1	HMC505LP4 / HMC505LP4E VCO
PCB [2]	105667 Eval Board

[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

HMC505LP4 / 505LP4E

v02.0508

Notes:

MMIC VCO w/ BUFFER AMPLIFIER, 6.8 - 7.4 GHz