

HVV1011-1000L

1000 Watts, 50V, 1030-1090MHz (32us on/18us off x 48) repeat every 24ms

DESCRIPTION

The high power HV1011-1000L device is a high voltage silicon enhancement mode RF transistor designed for L-band pulsed avionics applications operating over the frequency range of 1030 MHZ to 1090MHz.

FEATURES

High Power Gain Excellent Ruggedness 50V Supply Voltage

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DSS}	Drain-Source Voltage	95	V
V_{GS}	Gate-Source Voltage	-10 to	V
		+10	
I_{DSX}	Drain Current	80	Α
P_D^2	Power Dissipation	TBD	W
T _S	Storage Temperature	-65 to	°C
		+150	
T _J	T _J Junction		°C
	Temperature		

THERMAL CHARACTERISTICS

Symbol	Parameter	Max	Unit
$\theta_{\rm JC}^{1}$	Thermal Resistance	TBD	°C/W

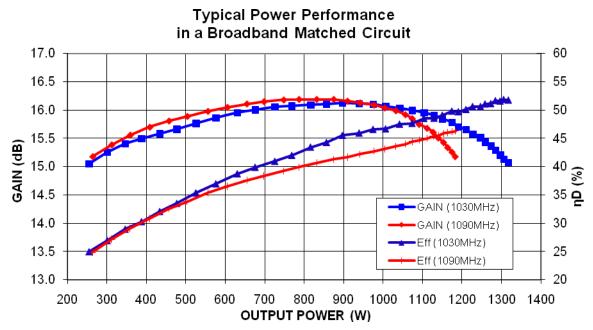
PACKAGE

The device utilizes a RoHS compliant flanged package with a ceramic lid. The HV1230 package style is qualified for gross leak test – MIL-STD-883, Method 1014.

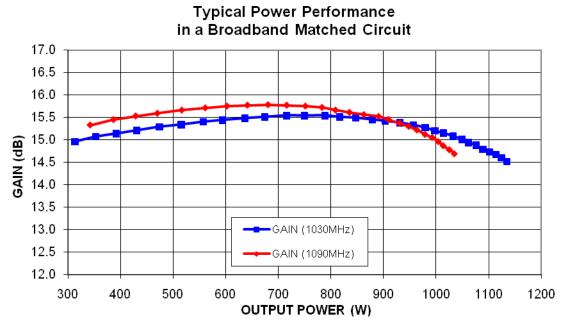
RUGGEDNESS

The HV1011-1000L device is capable of withstanding an output load mismatch corresponding to a 20:1 VSWR at rated output power over all phase angles and operating voltage across the frequency band of operation.

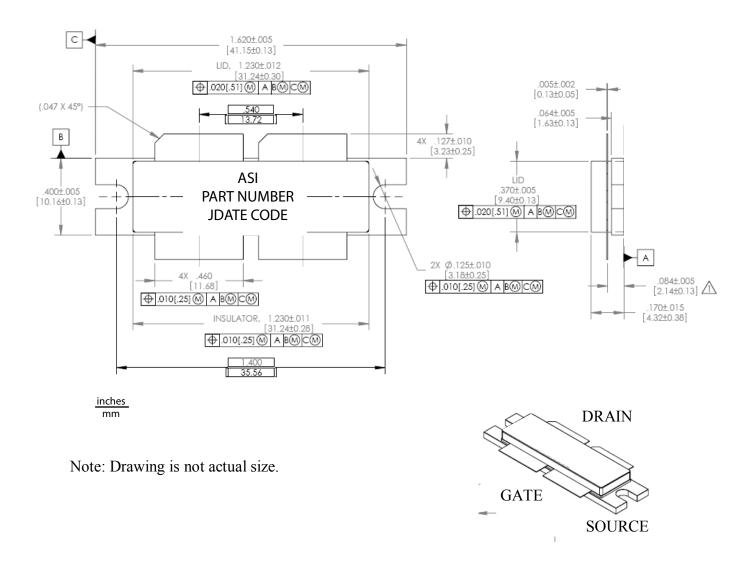
Symbol	Parameter	Test Condition	Max	Units
LMT ¹	Load	$P_{OUT} = 1000W$	20:1	VSWR
	Mismatch	F = 1030 MHz		
	Tolerance	F = 1030 MHZ		


ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Тур	Units
V _{BR(DSS)}	Drain-Source Breakdown	$V_{GS}=0V,I_{D}=10mA$	102	V
I _{DSS}	Drain Leakage Current	$V_{GS}=0V,V_{DS}=50V$	<500	μA
I_{GSS}	Gate Leakage Current	$V_{GS}=5V,V_{DS}=0V$	<10	μA
G _P ¹	Power Gain	P _{OUT} =1000W, F=1030 MHz	15.5	dB
IRL ¹	Input Return Loss	P _{OUT} =1000W, F=1030 MHz	10	dB
η_{D}^{1}	Drain Efficiency	P _{OUT} =1000W, F=1030 MHz	50	%
PD ¹	Pulse Droop	P _{OUT} =1000W, F=1030 MHz	<0.20	dB
BD ¹	Burst Droop	P _{OUT} =1000W, F=1030 MHz	<0.20	dB


 $^{^{1}}$ Under Pulse Conditions: Pulse Width = 32 μ s on/18 μ s off x 48, repeat every 24ms with VDD=50V, IDQ=200mA 2 Rated at T_{CASE} = 25 $^{\circ}$ C

HVV1011-1000L


1000 Watts, 50V, 1030-1090MHz (32us on/18us off x 48) repeat every 24ms

Typical device performance under Class AB mode of operation and RF signal conditions of 50 μ s pulse width and 2% duty cycle with V_{DD} = 50V and I_{DQ} = 100mA.

Typical device performance under Class AB mode of operation and RF burst conditions of $32\mu s$ on/ $18\mu s$ off x 48, repeated every 24ms with $V_{DD} = 50V$ and $I_{DQ} = 100mA$.

ASI Semiconductor, Inc. (ASI) reserves the right to make changes to information published in this document at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Information in this document is believed to be accurate and reliable. However, ASI does not give any representations or warranties, either express or implied, as to the accuracy or completeness of such information and shall have no liability no liability for consequences resulting from the use of such information. No license, either expressed or implied, is conveyed under any ASI intellectual property rights, including any patent rights.