High Performance Step-Down DC-DC Converter With Adjustable Output Voltage

FEATURES

- 2-MHz PWM Operation
- Integrated MOSFET Switches
- 2.6-V to 6.0-V Input Voltage Range
- Minimal Number of External Components
- Up to 96% conversion efficiency
- 600-mA Load Capability
- 100\% Duty Cycle Allows Low Dropout
- Integrated Compensation Circuit
- Over-Current Protection
- Shutdown Current < $2 \mu \mathrm{~A}$
- Thermal Shutdown
- Integrated UVLO
- 10-Pin MSOP and Space Saving MLP33 Packaging
- User Selectable PWM, PSM, or AUTO Mode
- PSM Frequency $\geq 20 \mathrm{kHz}$ for Inaudible Harmonics

APPLICATIONS

- W-CDMA Cell Phone
- PDAs/Palmtop PCs
- LCD Modules
- Portable Image Scanners
- GPS Receivers
- Smart Phones
- MP3 Players
- 3G Cell Phone
- Digital Cameras

DESCRIPTION

The Si9176 is a high efficiency 600-mA step down converter with internal low on resistance power MOSFET switch and synchronous rectifier transistors. It is designed to convert one cell Lilon battery or three cell alkaline battery voltages to a dynamically adjustable dc output. The integrated high frequency error amplifier with internal compensation minimizes external components.

In order to insure efficient conversion throughout the entire load range, PWM (pulse width modulation), PSM (pulse skipping mode) or Auto mode can be selected. In PWM mode,
$2-\mathrm{MHz}$ switching permits use of small external inductor and capacitor sizes allowing one of the smallest solutions.

PSM mode provides increased efficiency at light loads. In PSM mode the oscillator frequency is kept above 20 kHz to avoid audio band interference. When operating in Auto mode, the converter automatically selects operating in either PWM or PSM mode according to load current demand.

The Si9176 is available in 10-pin MSOP and even smaller MLP33 packages and is specified to operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

TYPICAL APPLICATIONS CIRCUIT

Vishay Siliconix
 New Product

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to AGND $=0 \mathrm{~V}$	
$L x, \overline{S D}, \mathrm{MODE}, \mathrm{FB}, \mathrm{C}_{\text {REF }}$	(or to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ whichever is less)
GND	-0.3 to +0.3 V
ESD Rating	2 kV
Storage Temperature	-65 to $125^{\circ} \mathrm{C}$
Operating Junction Temperature	$150^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {a }}$	
10-pin MSOPb	481 mW
10-pin MLP33	.. 915 mW

Thermal Impedance (Θ_{JA})	
10-Pin MSOP ... $135^{\circ} \mathrm{C} / \mathrm{W}$	
10-Pin MLP33	$71^{\circ} \mathrm{C} / \mathrm{W}$
Peak Inductor Current	1.8 A
Notes	
a. Device mounted with	
b. Derate $7.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ abover	
c. Derate $14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ abo	

and those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

$V_{\text {IN }}$ Range	2.6 V to 5.5 V
$\mathrm{C}_{\text {IN }}$	$10 \mu \mathrm{~F}$ Ceramic
Cout	$4.7 \mu \mathrm{~F}$ Ceramic

Inductor	$2.2 \mu \mathrm{H}$
Operating Load Current PWM Mode	0 to 600 mA
Operating Load Current PSM Mode	0 to 150 mA

SPECIFICATIONS

SPECIFICATIONS

Parameter		Symbol	Test Conditions Unless Specified $\mathrm{L}=2.2 \mu \mathrm{to} 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=4.7 \mu \mathrm{~F}$	Limits			Unit
	Mode ${ }^{\text {f }}$			Mina ${ }^{\text {a }}$	Typ ${ }^{\text {b }}$	Max ${ }^{\text {a }}$	

Converter Operation

Maximum Output Current	PWM	ILOAD	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$			600			mA
Maximum Output Current	PSM	ILOAD	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$					150	mA
Dropout Voltage ${ }^{\text {e }}$		V_{DD}	$\mathrm{V}_{\text {IN }}=2.6 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=600 \mathrm{~mA}$				190	300	mV
Closed Loop Bandwidth		BW					300		kHz
Load Regulation ${ }^{\text {c }}$	PWM		$\begin{gathered} \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=1.9 \mathrm{~V} @ 25^{\circ} \mathrm{C} \end{gathered}$	IOUT $=30 \mathrm{~mA}$ to 600 mA			0.5		\%
	PSM			IOUT $=30 \mathrm{~mA}$ to 75 mA			0.25		
Line Regulation	PWM		$\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.5 \mathrm{~V}$ to 5.5 V				± 0.1		\%/V
	PSM						± 0.1		
PWM/PSM Switch Threshold Current		IAUpk					200		mA
Maximum Inductor Peak Current Limit		LLpk					1500		
On Resistance	P-Channel	$r_{\text {dS }}$ (on)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$				250		$\mathrm{m} \Omega$
	N-Channel						250		
Output Ripple Voltage	PWM		$0.05 \Omega \mathrm{C}_{\text {OUT(ESR }}$		IOUT $=600 \mathrm{~mA}$		60		$m V_{p-p}$
	PSM				IOUT $=30 \mathrm{~mA}$		80		
Efficiency	PWM		$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$		IOUT $=600 \mathrm{~mA}$		90		\%
	PSM				IOUT $=30 \mathrm{~mA}$		80		
Frequency	PSM		IOUT $\geq 30 \mathrm{~mA}$			20			kHz

Supply Current

Input Supply Current	PWM	Isupply	lout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$ (not switching, $\mathrm{FB}=\mathrm{GND}$)	450	750	$\mu \mathrm{A}$
	PSM			400		
Shutdown Supply Current		ISD	$\overline{\mathrm{SD}}=$ Low		2	
Thermal Shutdown						
Thermal Shutdown Temperature ${ }^{\text {c }}$		$\mathrm{T}_{\text {J(S/D) }}$		165		${ }^{\circ} \mathrm{C}$
Thermal Hysteresis ${ }^{\text {c }}$				20		

Notes
a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
b. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
c. Guaranteed by design.
d. Settling times, t_{s}, apply after t_{en}.
e. Bypass is a device mode of operation, in which, the device is in 100% duty cycle. Bypass operation is possible in either PWM or PSM.
f. Operating modes are controlled with the MODE pin where Auto mode = MODE $=$ LOW, PWM Mode $=$ MODE $=\mathrm{HIGH}$, and PSM mode $=$ MODE $=$ OPEN.

Vishay Siliconix
New Product

PIN CONFIGURATION

Top View

Top View

PIN DESCRIPTION

Pin Number	Name	Function
1	L_{x}	Inductor connection
2	AGND	Low power analog ground
3	FB	Output voltage feedback
4	V_{DD}	Input supply voltage for the analog circuit.
5	REF	Internal reference, no connection should be made to this pin.
6	MODE	Used to select switching mode of the buck converter PWM/PSM Pin Logic:
7	$\overline{S D}$	Logic low disables IC and reduces quiescent current to below $2 \mu \mathrm{~A}$
8	AGND	Must be connected to AGND.
9	$\mathrm{V}_{\text {IN }}$	Input supply voltage
10	PGND	Low impedance power ground

ORDERING INFORMATION

| MSOP-10 | | | | MLP33 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part Number | Marking | Temperature | | Part Number | Marking | Temperature |
| Si9176DH-T1 | 9176 | -40 to $85^{\circ} \mathrm{C}$ | | Si9176DM-T1 | 9176 | -40 to $85^{\circ} \mathrm{C}$ |

Additional voltage options are available.

Eval Kit	Temperature Range	Board
Si9176DB	-40 to $85^{\circ} \mathrm{C}$	Surface Mount

FUNCTIONAL BLOCK DIAGRAM

DETAIL DESCRIPTION

General

The Si9176 is a high efficiency synchronous dc-dc converter that is ideally suited for lithium ion battery or three cell alkaline applications, as well as step-down of $3.3-\mathrm{V}$ or $5.0-\mathrm{V}$ supplies. The major blocks of the Si9176 are shown in the Functional Block Diagram. The $0.25-\Omega$ internal MOSFETs switching at a frequency of 2-MHz minimize PC board space while providing high conversion efficiency and performance. The high frequency error-amplifier with built-in loop compensation minimizes external components and provides rapid output settling times of $<30 \mu \mathrm{~s}$. Sensing of the inductor current for control is accomplished internally without power wasting resistors.

Start-Up

When voltage is applied to $\mathrm{V}_{I N}$ and V_{DD}, the under-voltage lockout (UVLO) circuit prevents the oscillator and control circuitry from turning on until the voltage on the exceeds 2.4 V . With a typical UVLO hysteresis of 0.1 V , the converter operates continuously until the voltage on $\mathrm{V}_{\text {IN }}$ drops below 2.3 V , whereupon the converter shuts down. This hysteresis prevents false start-stop cycling as the input voltage approaches the UVLO switching threshold. Start-up is always accomplished in PWM mode to ensure start-up under all load
conditions. Switching to other modes of operation occurs according to the state of the MODE pin and the load current. The start-up sequence occurs after $\overline{\text { SD }}$ switches from LOW to HIGH with $\mathrm{V}_{\mathbb{I N}}$ applied, or after V_{IN} rises above the UVLO threshold and $\overline{S D}$ is a logic HIGH.

Mode Control (MODE)

The MODE pin allows the user to control the mode of operation or to enable the Si9176 to automatically optimize the mode of operation according to load current. There are three different modes of operation as controlled by the MODE pin. Switching waveforms are shown in the Typical Switching Waveform sections, page 9.

> PWM Mode (MODE pin = HIGH)

With the MODE pin in the logic HIGH condition, the Si9176 operates as a 2-MHz fixed frequency voltage mode converter. A NMOS synchronous rectification MOSFET transistor provides very high conversion efficiency for large load currents by minimizing the conduction losses. PWM mode provides low output ripple, fast transient response, and switching frequency synchronization. Output load currents can range from 0 to 600 mA .

Vishay Siliconix

New Product

The error amplifier and comparator control the duty cycle of the PMOS MOSFET to continuously force the REF pin and FB pin voltages to be equal. As the input-to-output voltage difference drops, the duty cycle of the PMOS MOSFET can reach 100% to allow system designers to extract the maximum stored energy from the battery. The dropout voltage is 190 mV at 600 mA .

During each cycle, the PMOS switch current is limited to a maximum of 1.5 A (typical) thereby protecting the IC while continuing to force maximum current into the load.

Pulse Skipping Mode (MODE pin = OPEN)

By leaving the MODE pin open-circuit, the converter runs in pulse skipping mode (PSM). In PSM mode the oscillator continues to operate, but switching only occurs if the FB pin voltage is below the REF voltage at the start of each clock cycle. Clock cycles are skipped thereby reducing the switching frequency to well below 100 kHz and minimizing switching losses for improved efficiency at loads under 150 mA . Although PSM mode switching frequency varies with line and load conditions, the minimum PSM frequency will be kept above 20 kHz for load currents of 30 mA or more to prevent switching noise from reaching the audio frequency range.

Each time the PMOS switch is turned on, the inductor current is allowed to reach 300 mA . Once achieved, the PMOS switch is turned off and the NMOS switch is turned on in the normal manner. However, unlike PWM mode, the NMOS switch, turns off as the switch current approaches zero current to maximize efficiency. The PMOS switch remains on continuously (100\% duty cycle) when the input-voltage-to-output-voltage difference is low enabling maximum possible energy extraction from the battery.

PSM mode is recommend for load currents of 150 mA or less.

Auto Mode

When the MODE pin grounded, the converter is set to Auto mode. Switching between PWM mode and PSM modes takes place automatically without an external control signal. For heavy load operation, the converter will operate in PWM mode to achieve maximum efficiency. When delivering light load
currents, the converter operates in PSM mode to conserve power. The switchover threshold between the two modes is determined by the peak inductor current, which is 300 mA nominal. There is hysteresis in the switchover threshold to provide smooth operation. Thus, the mode PSM-to-PWM mode switchover current for increasing load currents is higher than that of PWM-to-PSM mode switchover for decreasing load currents.

Oscillator

The internal oscillator provides for a fixed $2-\mathrm{MHz}$ switching frequency.

Dynamic Output Voltage Control (REF)

The Si9176 is designed with an adjustable output voltage which has a change of $V_{F B}$ to $V_{I N}-V_{D R O P}$. Vout is defined according to the following relationship:

$$
\mathrm{V}_{\mathrm{OUT}}=\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right) \times \mathrm{V}_{\mathrm{FB}}
$$

Converter Shutdown ($\overline{\mathbf{S D}} \mathbf{~ p i n)}$

With logic LOW level on the $\overline{\mathrm{SD}} \mathrm{pin}$, the Si 9176 is shutdown. Shutdown reduces current consumption to less than $2-\mu \mathrm{A}$ by shutting off all of the internal circuits. Both the PMOS and NMOS transistors are turned off. A logic HIGH enables the IC to start up as described in "Start-up" section.

Thermal Shutdown

The Si9176 includes thermal shutdown circuitry, which turns off the regulator when the junction temperature exceeds $165^{\circ} \mathrm{C}$. Once the junction temperature drops below $145^{\circ} \mathrm{C}$, the regulator is enabled. If the condition causing the over temperature, the Si9176 begins thermal cycling, turning the regulator on and off in response to junction temperature. Restart from a thermal shutdown condition is the same as described in the "Start-up" section.

New Product
Vishay Siliconix

APPLICATIONS CIRCUIT

$\mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, Ceramic, Murata GRM42-2X5R106K16
$\mathrm{C}_{1}, \mathrm{C}_{2}=0.01 \mu \mathrm{~F}$, Vishay VJ0603Y 104KXXAT
$C_{\text {OUt }}=4.7 \mu \mathrm{~F}$, Ceramic, Murata GRM42-6X5R475K16
$R_{1}=8.2 \mathrm{k} \Omega$, Vishay CRCW06031132F
$R_{2}=20 \mathrm{k} \Omega$, Vishay CRCW06032002F
$\mathrm{L}_{1}=2.2 \mu \mathrm{H}$, Toko A914BYW-2R2M

TYPICAL CHARACTERISTICS

- Indicates $\mathrm{V}_{\text {OUT }}$ settles to $\pm 2 \%$ of the final value.

Figure 1. PWM Mode $V_{\text {OUT }}$ Settling

Vishay Siliconix
New Product

TYPICAL CHARACTERISTICS

TYPICAL SWITCHING WAVEFORMS (VIN = 3.6 V, Vout $=\mathbf{3 . 0}$ V)

PWM mode Heavy-Load Switching Waveforms,
$\mathrm{I}_{\text {OUT }}=600 \mathrm{~mA}, \mathrm{MODE}=\mathrm{HIGH}$

PWM Mode Light-Load Switching Waveforms,
$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{MODE}=\mathrm{HIGH}$

PWM Mode Medium-Load Switching Waveforms,
IOUT $=300 \mathrm{~mA}, \mathrm{MODE}=\mathrm{HIGH}$

PSM Mode Light-Load Switching Waveforms,
IOUT $=150 \mathrm{~mA}, \mathrm{MODE}=\mathrm{OPEN}$

PSM Mode Light-Load Switching Waveforms,
IOUT $=30 \mathrm{~mA}, \mathrm{MODE}=\mathrm{OPEN}$

TYPICAL WAVEFORMS (VIN $=3.6$ V, V OUT $=1.9 \mathrm{~V}$)

PWM Mode Heavy-Load Switching Waveforms,
lout $=600 \mathrm{~mA}, \mathrm{MODE}=\mathrm{HIGH}$

PWM Mode Light-Load Switching Waveforms,
IOUT $=0 \mathrm{~mA}, \mathrm{MODE}=\mathrm{HIGH}$

PWM Mode Medium-Load Switching Waveforms, $\mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}, \mathrm{MODE}=\mathrm{HIGH}$

PSM Mode Light-Load Switching Waveforms, IOUT $=150 \mathrm{~mA}, \mathrm{MODE}=\mathrm{OPEN}$

PSM Mode Light-Load Switching Waveforms,
IOUT $=30 \mathrm{~mA}, \mathrm{MODE}=\mathrm{OPEN}$

$\mathrm{V}_{\mathrm{LX}}, 5 \mathrm{~V} / \mathrm{div}$

Inductor Current $200 \mathrm{~mA} / \mathrm{div}$
$V_{\text {OUT }}$
(AC-Coupled) $100 \mathrm{mV} / \mathrm{div}$

TYPICAL START-UP AND SHUTDOWN TRANSIENT WAVEFORMS (VIN $=3.6$ V, Vout $=1.9$ V)

Start-Up, R LOAD $=4 \Omega$

$20 \mu \mathrm{~S} / \mathrm{div}$

$200 \mu \mathrm{~S} / \mathrm{div}$

Start-Up, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SD}}=3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=4 \Omega$

$20 \mu \mathrm{~S} / \mathrm{div}$

Enable Switching, RLOAD $=4 \Omega$

$20 \mu \mathrm{~S} / \mathrm{div}$

TYPICAL MODE SWITCH TRANSIENT WAVEFORM

Output Transient At Mode Switch, ILOAD $=30 \mathrm{~mA}$

Vishay Siliconix

TYPICAL LOAD TRANSIENT WAVEFORMS (Vin $=\mathbf{3 . 6}$ V, VOUt $=1.9$ V)

$10 \mu \mathrm{~S} / \mathrm{div}$

Load Transient, PWM Mode, $I_{\text {LOAD }}=30$ to $500 \mathrm{~mA}, \mathrm{~L}=2.2 \mu \mathrm{H}, \mathrm{MODE}=\mathrm{HIGH}$

$10 \mu \mathrm{~S} / \mathrm{div}$

Load Transient (PSM Mode),
$I_{\text {LOAD }}=30$ to $150 \mathrm{~mA}, \mathrm{~L}=2.2 \mu \mathrm{H}$

$100 \mu \mathrm{~S} / \mathrm{div}$

